Skip to main content
Log in

Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controllable anisotropic growth of perovskite nanocrystals (NCs) is challenging since it is difficult to separate the nucleation and growth processes. Here, a two-step nucleation strategy is proposed to control the binding interaction between surface ligands and NCs, resulting in facet-induced coordination competition. Oleic acid as surface activated ligand leads to the formation of defective lead bromine octahedron, and the binding interaction between 4-dodecylbenzenesulfonic acid and lead atoms promotes the formation of two kinds of binding interactions. Based on this strategy, the anisotropic growth of CsPbBr3 nanoplatelet (NPLs) with adjusted length from 11.4 to 24 nm, and the evolution of NPLs from stacked to tongue-shaped have been realized. Elemental line scan reveals the sulfur atoms mainly distribute at the edge of NPLs. Furthermore, binding energy calculation and experimental results illustrate the coordination competition of different binding interaction on specific facets induces the anisotropic growth of NPLs. Importantly, strong emission anisotropy of highly ordered NPLs with polarization ratio up to 0.58 is illustrated. This work not only deepens our understanding of the controllable synthesis of perovskite NCs, but also provides a reference for the regulation of light emitting diode and soler cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  2. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    Article  CAS  Google Scholar 

  3. Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010–1016.

    Article  CAS  Google Scholar 

  4. Dong, Y. T.; Wang, Y. K.; Yuan, F. L.; Johnston, A.; Liu, Y.; Ma, D. X.; Choi, M. J.; Chen, B.; Chekini, M.; Baek, S. W. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotech. 2020, 15, 668–674.

    Article  CAS  Google Scholar 

  5. Kim, Y. H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y. H.; Xu, H. X.; Nagane, S.; Wexler, R. B.; Kim, D. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 2021, 15, 148–155.

    Article  CAS  Google Scholar 

  6. De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

    Article  CAS  Google Scholar 

  7. Chen, M.; Hu, H. C.; Tan, Y. S.; Yao, N.; Zhong, Q. X.; Sun, B. Q.; Cao, M. H.; Zhang, Q.; Yin, Y. D. Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy 2018, 53, 559–566.

    Article  CAS  Google Scholar 

  8. Liu, J. L.; Shi, W. X.; Ni, B.; Yang, Y.; Li, S. Z.; Zhuang, J.; Wang, X. Incorporation of clusters within inorganic materials through their addition during nucleation steps. Nat. Chem. 2019, 11, 839–845.

    Article  CAS  Google Scholar 

  9. Pradhan, N. Journey of making cesium lead halide perovskite nanocrystals: What’s next. J. Phys. Chem. Lett. 2019, 10, 5847–5855.

    Article  CAS  Google Scholar 

  10. Zhu, C. Q.; Chen, D. D.; Cao, W. C.; Lai, R. C.; Pu, C. D.; Li, J. Z.; Kong, X. Q.; Peng, X. G. Facet-dependent on-surface reactions in the growth of CdSe nanoplatelets. Angew. Chem., Int. Ed. 2019, 58, 17764–17770.

    Article  CAS  Google Scholar 

  11. Wang, Y. H.; Pu, C. D.; Lei, H. R.; Qin, H. Y.; Peng, X. G. CdSe@CdS dot@platelet nanocrystals: Controlled epitaxy, monoexponential decay of two-dimensional exciton, nonblinking photoluminescence of single nanocrystal. J. Am. Chem. Soc. 2019, 141, 17617–17628.

    Article  CAS  Google Scholar 

  12. Zhang, B. W.; Goldoni, L.; Zito, J.; Dang, Z. Y.; Almeida, G.; Zaccaria, F.; de Wit, J.; Infante, I.; De Trizio, L.; Manna, L. Alkyl phosphonic acids deliver CsPbBr3 nanocrystals with high photoluminescence quantum yield and truncated octahedron shape. Chem. Mater. 2019, 31, 9140–9147.

    Article  CAS  Google Scholar 

  13. Peng, L. C.; Dutta, S. K.; Mondal, D.; Hudait, B.; Shyamal, S.; Xie, R. G.; Mahadevan, P.; Pradhan, N. Arm growth and facet modulation in perovskite nanocrystals. J. Am. Chem. Soc. 2019, 141, 16160–16168.

    Article  CAS  Google Scholar 

  14. Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A. F.; Wang, K.; Muller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B. et al. Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3 (X = Cl, Br, I) nanorods. Angew. Chem., Int. Ed. 2018, 57, 16094–16098.

    Article  CAS  Google Scholar 

  15. Yang, D.; Li, P. L.; Zou, Y. T.; Cao, M. H.; Hu, H. C.; Zhong, Q. X.; Hu, J. X.; Sun, B. Q.; Duhm, S.; Xu, Y. et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 2019, 31, 1575–1583.

    Article  CAS  Google Scholar 

  16. Jing, Q.; Su, Y. C.; Xing, X.; Lu, Z. D. Highly luminescent CsPbBr3 nanorods synthesized by a ligand-regulated reaction at the water-oil interface. J. Mater. Chem. C. 2019, 7, 1854–1858.

    Article  CAS  Google Scholar 

  17. Li, Y. X.; Huang, H.; Xiong, Y.; Richter, A. F.; Kershaw, S. V.; Feldmann, J.; Rogach, A. L. Using polar alcohols for the direct synthesis of cesium lead halide perovskite nanorods with anisotropic emission. ACS Nano 2019, 13, 8237–8245.

    Article  CAS  Google Scholar 

  18. Wang, S.; Yu, J. H.; Zhang, M. Y.; Chen, D. C.; Li, C. S.; Chen, R.; Jia, G. H.; Rogach, A. L.; Yang, X. Y. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy. Nano Lett. 2019, 19, 6315–6322.

    Article  Google Scholar 

  19. Hudait, B.; Dutta, S. K.; Pradhan, N. Isotropic CsPbBr3 perovskite nanocrystals beyond nanocubes: Growth and optical properties. ACS Energy Lett. 2020, 5, 650–656.

    Article  CAS  Google Scholar 

  20. Yang, D. D.; Li, X. M.; Wu, Y.; Wei, C. T.; Qin, Z. Y.; Zhang, C. F.; Sun, Z. G.; Li, Y. L.; Wang, Y.; Zeng, H. B. Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Adv. Opt. Mater. 2019, 7, 1900276.

    Article  Google Scholar 

  21. Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704–1711.

    Article  CAS  Google Scholar 

  22. Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.

    Article  CAS  Google Scholar 

  23. Persson, K. Materials Data on CsPbBr3(SG: 140) by Materials Project. United States, 2016, DOI: https://doi.org/10.17188/1330982.

  24. Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

    Article  CAS  Google Scholar 

  25. Wu, Y.; Li, X. M.; Zeng, H. B. Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett. 2019, 4, 673–681.

    Article  CAS  Google Scholar 

  26. Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

    Article  CAS  Google Scholar 

  27. Hintermayr, V. A.; Polavarapu, L.; Urban, A. S.; Feldmann, J. Accelerated carrier relaxation through reduced coulomb screening in two-dimensional halide perovskite nanoplatelets. ACS Nano 2018, 12, 10151–10158.

    Article  CAS  Google Scholar 

  28. Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

    Article  CAS  Google Scholar 

  29. Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y.; Wang, Y.; Zeng, H. B. CsPbBr3 quantum dots 2.0: Benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 2019, 31, 1900767.

    Article  Google Scholar 

  30. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  33. Deacon, G. B.; Phillips, R. J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordin. Chem. Rev. 1980, 33, 227–250.

    Article  CAS  Google Scholar 

  34. Zhang, J.; Zhang, H. B.; Cao, W. C.; Pang, Z. F.; Li, J. Z.; Shu, Y. F.; Zhu, C. Q.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Identification of facet-dependent coordination structures of carboxylate ligands on CdSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 15675–15683.

    Article  CAS  Google Scholar 

  35. Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

    Article  CAS  Google Scholar 

  36. Świderski, G.; Kalinowska, M.; Świsłocka, R.; Wojtulewski, S.; Lewandowski, W. Spectroscopic (FT-IR, FT-Raman and 1H and 13C NMR) and theoretical in MP2/6-311++G(d, p) and B3LYP/6-311++G(d, p) levels study of benzenesulfonic acid and alkali metal benzenesulfonates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 100, 41–50.

    Article  Google Scholar 

  37. Zhu, Z.; Hadjiev, V. G.; Rong, Y. G.; Guo, R.; Cao, B.; Tang, Z. J.; Qin, F.; Li, Y.; Wang, Y. N.; Hao, F. et al. Interaction of organic cation with water molecule in perovskite MAPbI3: From dynamic orientational disorder to hydrogen bonding. Chem. Mater. 2016, 28, 7385–7393.

    Article  CAS  Google Scholar 

  38. Glaser, T.; Müller, C.; Sendner, M.; Krekeler, C.; Semonin, O. E.; Hull, T. D.; Yaffe, O.; Owen, J. S.; Kowalsky, W.; Pucci, A. et al. Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 2015, 6, 2913–2918.

    Article  CAS  Google Scholar 

  39. Woo, J. Y.; Kim, Y.; Bae, J.; Kim, T. G.; Kim, J. W.; Lee, D. C.; Jeong, S. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 2017, 29, 7088–7092.

    Article  CAS  Google Scholar 

  40. Liu, L. G.; Huang, S.; Pan, L. F.; Shi, L. J.; Zou, B. S.; Deng, L. G.; Zhong, H. Z. Colloidal synthesis of CH3NH3PbBr3 nanoplatelets with polarized emission through self-organization. Angew. Chem., Int. Ed. 2017, 56, 1780–1783.

    Article  CAS  Google Scholar 

  41. Liu, Y.; Wu, Z. Y.; Liu, X. T.; Han, S. G.; Li, Y. B.; Yang, T.; Ma, Y.; Hong, M. C.; Luo, J. H.; Sun, Z. H. Intrinsic strong linear dichroism of multilayered 2D hybrid perovskite crystals toward highly polarized-sensitive photodetection. Adv. Opt. Mater. 2019, 7, 1901049.

    Article  CAS  Google Scholar 

  42. Gao, Y.; Zhao, L. Y.; Shang, Q. Y.; Zhong, Y. G.; Liu, Z.; Chen, J.; Zhang, Z. P.; Shi, J.; Du, W. N.; Zhang, Y. F. et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv. Mater. 2018, 30, 1801805.

    Article  Google Scholar 

  43. Shi, Y.; Duan, P.; Huo, S.; Li, Y.; Liu, M. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 2018, 30, 1705011.

    Article  Google Scholar 

  44. Srivastava, A. K.; Zhang, W. L.; Schneider, J.; Rogach, A. L.; Chigrinov, V. G.; Kwok, H. S. Photoaligned nanorod enhancement films with polarized emission for liquid-crystal-display applications. Adv. Mater. 2017, 29, 1701091.

    Article  Google Scholar 

  45. Wang, D.; Wu, D.; Dong, D.; Chen, W.; Hao, J. J.; Qin, J.; Xu, B.; Wang, K.; Sun, X. W. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 2016, 8, 11565–11570.

    Article  CAS  Google Scholar 

  46. He, J.; Towers, A.; Wang, Y. N.; Yuan, P. S.; Jiang, Z.; Chen, J. S.; Gesquiere, A. J.; Wu, S. T.; Dong, Y. J. In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. Nanoscale 2018, 10, 15436–15441.

    Article  CAS  Google Scholar 

  47. Shi, Z. F.; Li, Y.; Li, S.; Ji, H. F.; Lei, L. Z.; Wu, D.; Xu, T. T.; Xu, J. M.; Tian, Y. T.; Li, X. J. Polarized emission effect realized in CH3NH3PbI3 perovskite nanocrystals. J. Mater. Chem. C. 2017, 5, 8699–8706.

    Article  CAS  Google Scholar 

  48. Dou, Y. J.; Cao, F.; Dudka, T.; Li, Y. G.; Wang, S.; Zhang, C. X.; Gao, Y.; Yang, X. Y.; Rogach, A. L. Lattice distortion in mixed-anion lead halide perovskite nanorods leads to their high fluorescence anisotropy. ACS Mater. Lett. 2020, 2, 814–820.

    Article  CAS  Google Scholar 

  49. Meng, L. H.; Yang, C. G.; Meng, J. J.; Wang, Y. Z.; Ge, Y.; Shao, Z. Q.; Zhang, G. F.; Rogach, A. L.; Zhong, H. Z. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Res. 2019, 12, 1411–1416.

    Article  CAS  Google Scholar 

  50. Raja, S. N.; Bekenstein, Y.; Koc, M. A.; Fischer, S.; Zhang, D. D.; Lin, L. W.; Ritchie, R. O.; Yang, P. D.; Alivisatos, A. P. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523–35533.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61874054, 51902160, 61725402, and 51972058), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0271), the Natural Science Foundation of Jiangsu Province (No. BK20180489), Young Elite Scientists Sponsorship Program by CAST (No. 2018QNRC001), Fundamental Research Funds for the Central Universities (No. 30918011208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Li or Haibo Zeng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Li, X., Li, Y. et al. Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission. Nano Res. 15, 502–509 (2022). https://doi.org/10.1007/s12274-021-3509-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3509-6

Keywords

Navigation