Skip to main content
Log in

Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmon coupling is an essential strategy to realize strong local electromagnetic (EM) field which is crucial for high-performance plasmonic devices. In this work, multiple plasmon couplings are demonstrated in three-dimensional (3D) hybrid plasmonic systems composed of polydimethylsiloxane-supported ordered silver nanocone (AgNC) arrays decorated with high-density gold nanoparticles (AuNPs) which are fabricated by a template-assisted physical vapor deposition process. Strong interparticle coupling, particle-film coupling, inter-cone coupling, and particle-cone coupling are revealed by numerical simulations in such composite nanostructures, which produce intense and high-density EM hot spots, boosting highly sensitive and reproducible surface enhanced Raman scattering (SERS) detection with an enhancement factor of ∼ 1.74 × 108. Furthermore, a linear correlation between logarithmic Raman intensity and logarithmic concentration of probe molecules is observed in a large concentration range. These results offer new ideas to develop novel plasmonic devices, and provide alternative strategy to realize flexible and high-performance SERS sensors for trace molecule detection and quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J.; Koo, K. M.; Wang, Y. L.; Trau, M. Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications. Adv. Sci.2019, 6, 1900730.

    Article  CAS  Google Scholar 

  2. Bell, S. E. J.; Charron, G.; Cortés, E.; Kneipp, J.; de la Chapelle, M. L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem., Int. Ed.2020, 59, 5454–5462.

    Article  CAS  Google Scholar 

  3. Xu, M.; Tu, G. P.; Ji, M. W.; Wan, X. D.; Liu, J. J.; Liu, J.; Rong, H. P.; Yang, Y. L.; Wang, C.; Zhang, J. T. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res.2019, 12, 1375–1379.

    Article  CAS  Google Scholar 

  4. Xu, K. C.; Zhou, R.; Takei, K.; Hong, M. H. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci.2019, 6, 1900925.

    Article  Google Scholar 

  5. Zhao, J.; Sun, W. N.; Sun, W. J.; Liu, L. Z.; Xia, X. X.; Quan, B. G.; Jin, A. Z.; Gu, C. Z.; Li, J. J. Rapid templated fabrication of large-scale, high-density metallic nanocone arrays and SERS applications. J. Mater. Chem. C2014, 2, 9987–9992.

    Article  CAS  Google Scholar 

  6. Das, G; Battista, E.; Manzo, G; Causa, F.; Netti, P. A.; Fabrizio, E. D. Large-scale plasmonic nanocones array for spectroscopy detection. ACS Appl. Mater. Interfaces2015, 7, 23597–23604.

    Article  CAS  Google Scholar 

  7. Lee, S.; Mayer, K. M.; Hafner, J. H. Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal. Chem.2009, 81, 4450–4455.

    Article  CAS  Google Scholar 

  8. Zheng, X.; Chen, Y. H.; Chen, Y.; Bi, N.; Qi, H. B.; Qin, M. H.; Song, D.; Zhang, H. Q.; Tian, Y. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering. J. Raman Spectrosc.2012, 43, 1374–1380.

    Article  CAS  Google Scholar 

  9. Khoury, C. G.; Vo-Dinh, T. Gold nanostars for surface-enhanced Raman scattering: Synthesis, characterization and optimization. J. Phys. Chem. C2008, 112, 18849–18859.

    Article  CAS  Google Scholar 

  10. Park, S.; Lee, J.; Ko, H. Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Appl. Mater. Interfaces2017, 9, 44088–44095.

    Article  CAS  Google Scholar 

  11. Wu, L. X.; Reinhard, B. M. Probing subdiffraction limit separations with Plasmon coupling microscopy: Concepts and applications. Chem. Soc. Rev.2014, 43, 3884–3897.

    Article  CAS  Google Scholar 

  12. Ghosh, G. K.; Pal, T. Interparticle coupling effect on the surface Plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev.2007, 107, 4797–4862.

    Article  CAS  Google Scholar 

  13. Yang, Y.; Gu, C. Z.; Li, J. J. Sub-5 nm metal nanogaps: Physical properties, fabrication methods, and device applications. Small2019, 15, 1804177.

    Article  Google Scholar 

  14. Squillaci, M. A.; Zhong, X. L.; Peyruchat, L.; Genet, C.; Ebbesen, T. W.; Samori, P. 2D hybrid networks of gold nanoparticles: Mechanoresponsive optical humidity sensors. Nanoscale2019, 11, 19315–19318.

    Article  CAS  Google Scholar 

  15. Ciraci, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández-Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R. Probing the ultimate limits of plasmonic enhancement. Science2012, 337, 1072–1074.

    Article  CAS  Google Scholar 

  16. Alber, I.; Sigle, W.; Demming-Janssen, F.; Neumann, R.; Trautmann, C.; van Aken, P. A.; Toimil-Molares, M. E. Multipole surface plasmon resonances in conductively coupled metal nanowire dimers. ACS Nano2012, 6, 9711–9717.

    Article  CAS  Google Scholar 

  17. Li, X. H.; Choy, W. C. H.; Ren, X. G.; Zhang, D.; Lu, H. F. Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater.2014, 24, 3114–3122.

    Article  CAS  Google Scholar 

  18. Huang, F. M.; Wilding, D.; Speed, J. D.; Russell, A. E.; Bartlett, P. N.; Baumberg, J. J. Dressing plasmons in particle-in-cavity architectures. Nano Lett.2011, 11, 1221–1226.

    Article  CAS  Google Scholar 

  19. Speed, J. D.; Johnson, R. P.; Hugall, J. T.; Lal, N. N.; Bartlett, P. N.; Baumberg, J. J.; Russell, A. E. SERS from molecules bridging the gap of particle-in-cavity structures. Chem. Commun.2011, 47, 6335–6337.

    Article  CAS  Google Scholar 

  20. Lee, S.; Kim, J.; Yang, H.; Cortés, E.; Kang, S.; Han, S. W. Particle-in-a-frame nanostructures with interior nanogaps. Angew. Chem., Int. Ed.2019, 58, 15890–15894.

    Article  CAS  Google Scholar 

  21. Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G. A. E.; Moshchalkov, V. V.; Van Dorpe, P.; Nordlander, P.; Maier, S. A. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano2010, 4, 1664–1670.

    Article  CAS  Google Scholar 

  22. Chow, T. H.; Lai, Y. H.; Cui, X. M.; Lu, W. Z.; Zhuo, X. L.; Wang, J. F. Colloidal gold nanorings and their plasmon coupling with gold nanospheres. Small2019, 15, 1902608.

    Article  Google Scholar 

  23. Lee, S.; Choi, I. Fabrication strategies of 3D plasmonic structures for SERS. BioChip J.2019, 13, 30–42.

    Article  CAS  Google Scholar 

  24. Lee, S.; Hahm, M. G.; Vajtai, R.; Hashim, D. P.; Thurakitseree, T.; Chipara, A. C.; Ajayan, P. M.; Hafner, J. H. Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates. Adv. Mater.2012, 24, 5261–5266.

    Article  CAS  Google Scholar 

  25. Lee, Y.; Lee, J.; Lee, T. K.; Park, J.; Ha, M.; Kwak, S. K.; Ko, H. Particle-on-film gap plasmons on antireflective ZnO nanocone arrays for molecular-level surface-enhanced Raman scattering sensors. ACS Appl. Mater. Interfaces2015, 7, 26421–26429.

    Article  CAS  Google Scholar 

  26. Zuo, Z. W.; Zhu, K.; Cui, G. L.; Huang, W. X.; Qu, J.; Shi, Y.; Liu, Y. S.; Ji, G. B. Improved antireflection properties and optimized structure for passivation of well-separated, vertical silicon nanowire arrays for solar cell applications. Sol. Energy Mater. Sol. Cells2014, 125, 248–252.

    Article  CAS  Google Scholar 

  27. Lee, T.; Kwon, S.; Jung, S.; Lim H.; Lee, J. J. Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates. Nano Res.2019, 12, 2554–2558.

    Article  CAS  Google Scholar 

  28. Zuo, Z. W.; Zhu, K.; Ning, L. X.; Cui, G. L.; Qu, J.; Cheng, Y.; Wang, J. Z.; Shi, Y.; Xu, D. S.; Xin, Y. Highly sensitive surface enhanced Raman scattering substrates based on Ag decorated Si nanocone arrays and their application in trace dimethyl phthalate detection. Appl. Surf. Sci.2015, 325, 45–51.

    Article  CAS  Google Scholar 

  29. Horrer, A.; Schäfer, C.; Broch, K.; Gollmer, D. A.; Rogalski, J.; Fulmes, J.; Zhang, D.; Meixner, A. J.; Schreiber, F.; Kern, D. P. et al. Parallel fabrication of plasmonic nanocone sensing arrays. Small2013, 9, 3987–3992.

    Article  CAS  Google Scholar 

  30. Zhu, Q.; Zhao, X. Y.; Zhang, X. L.; Zhu, A. N.; Gao, R. X.; Zhang, Y. J.; Wang, Y. X.; Chen, L. Au nanocone array with 3D hotspots for biomarker chips. CrystEngComm2020, 22, 5191–5199.

    Article  CAS  Google Scholar 

  31. Liu, D. M.; Wang, Q. K.; Hu, J. Fabrication and characterization of highly ordered Au nanocone array-patterned glass with enhanced SERS and hydrophobicity. Appl. Surf. Sci.2015, 356, 364–369.

    Article  CAS  Google Scholar 

  32. Yamauchi, Y.; Wang, L.; Ataee-Esfahani, H.; Fukata, N.; Nagaura, T.; Inoue, S. Electrochemical design of two-dimensional Au nanocone arrays using porous anodic alumina membranes with conical holes. J. Nanosci. Nanotechnol.2010, 10, 4384–4387.

    Article  CAS  Google Scholar 

  33. Mao, H. Y.; Huang, C. J.; Wu, W. G.; Xue, M.; Yang, Y. D.; Xiong, J. J.; Ming, A. J.; Wang, W. B. Wafer-level fabrication of nanocone forests by plasma repolymerization technique for surface-enhanced Raman scattering devices. Appl. Surf. Sci.2017, 396, 1085–1091.

    Article  CAS  Google Scholar 

  34. Mehrvar, L.; Sadeghipari, M.; Tavassoli, S. H.; Mohajerzadeh, S.; Fathipour, M.; Hajihosseini, H. R. Fabrication of Ag-modified nanocone frustum arrays with controlled shape as active substrates for surface-enhanced Raman scattering. J. Raman Spectrosc.2019, 50, 1416–1428.

    Article  CAS  Google Scholar 

  35. Hackett, L. P.; Goddard, L. L.; Liu, G. L. Plasmonic nanocone arrays for rapid and detailed cell lysate surface enhanced Raman spectroscopy analysis. Analyst2017, 142, 4422–4430.

    Article  CAS  Google Scholar 

  36. Zhao, W. N.; Wu, Y. Y.; Liu, X. G.; Xu, Y. B.; Wang, S. B.; Xu, Z. M. The fabrication of polymer-nanocone-based 3D Au nanoparticle array and its SERS performance. Appl. Phys. A2017, 123, 45.

    Article  Google Scholar 

  37. Wu, W.; Hu, M.; Ou, F. S.; Li, Z. Y.; Williams, R. S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology2010, 21, 255502.

    Article  Google Scholar 

  38. Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Arrays of cone-shaped ZnO Nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv. Funct. Mater.2012, 22, 218–224.

    Article  Google Scholar 

  39. Xia, Y. Y.; Mo, X.; Ling, H. Q.; Hang, T.; Li, M. Facile fabrication of Au nanoparticles-decorated Ni nanocone arrays as effective surface-enhanced Raman scattering substrates. J. Electrochem. Soc.2016, 163, D575–D578.

    Article  CAS  Google Scholar 

  40. Gao, R. K.; Song, X. F.; Zhan, C. B.; Weng, C. G.; Cheng, S.; Guo, K.; Ma, N.; Chang, H. F.; Guo, Z. Y.; Luo, L. B. et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B Chem.2020, 314, 128081.

    Article  CAS  Google Scholar 

  41. Hu, Y. S.; Jeon, J.; Seok, T. J.; Lee, S.; Hafner, J. H.; Drezek, R. A.; Choo, H. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: A practical approach to harness in-plane excitation. ACS Nano2010, 4, 5721–5730.

    Article  CAS  Google Scholar 

  42. Wang, Z.; Zheng, C. X.; Zhang, P.; Huang, Z. L.; Zhu, C. H.; Wang, X. J.; Hu, X. Y.; Yan, J. A split-type structure of Ag nanoparticles and Al2O3@Ag@Si nanocone arrays: An ingenious strategy for SERS-based detection. Nanoscale2020, 12, 4359–4365.

    Article  CAS  Google Scholar 

  43. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev.2017, 46, 4042–4076.

    Article  CAS  Google Scholar 

  44. Yang, Y.; Callahan, J. M.; Kim, T. H.; Brown, A. S.; Everitt, H. O. Ultraviolet nanoplasmonics: A demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles. Nano Lett.2013, 13, 2837–2841.

    Article  CAS  Google Scholar 

  45. Im, H.; Lee, S. H.; Wittenberg, N. J.; Johnson T. W.; Lindquist, N. C.; Nagpal, P.; Norris, D. J.; Oh, S. H. Template-stripped smooth Ag nanohole arrays with silica shells for surface Plasmon resonance biosensing. ACS Nano2011, 5, 6244–6253.

    Article  CAS  Google Scholar 

  46. Lee, K. L.; Hsu, H. Y.; You, M. L.; Chang, C. C.; Pan, M. Y.; Shi, X.; Ueno, K.; Misawa, H.; Wei, P. K. Highly sensitive aluminum-based biosensors using tailorable Fano resonances in capped nanostructures. Sci. Rep.2017, 7, 44104.

    Article  Google Scholar 

  47. Lassiter, J. B.; McGuire, F.; Mock, J. J.; Ciraci, C.; Hill, R. T.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett.2013, 13, 5866–5872.

    Article  CAS  Google Scholar 

  48. Zuo, Z. W.; Zhang, S.; Wang, Y. W.; Guo, Y. B.; Sun, L. Y.; Li, K. G.; Cui, G. L. Effective Plasmon coupling in conical cavities for sensitive surface enhanced Raman scattering with quantitative analysis ability. Nanoscale2019, 11, 17913–17919.

    Article  CAS  Google Scholar 

  49. Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem.2009, 394, 1729–1745.

    Article  CAS  Google Scholar 

  50. Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C2020, 8, 3956–3969.

    Article  CAS  Google Scholar 

  51. Fortuni, B.; Inose, T.; Uezono, S.; Toyouchi, S.; Umemoto, K.; Sekine, S.; Fujita, Y.; Ricci, M.; Lu, G.; Masuhara, A. et al. In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates. Chem. Commun.2017, 53, 11298–11301.

    Article  CAS  Google Scholar 

  52. Liu, S. S.; Xu, Z. M.; Sun, T. Y.; Zhao, W. N.; Wu, X. H.; Ma, Z. C.; Xu, H. F.; He, J.; Chen, C. H. Large-scale fabrication of polymer/Ag core-shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition. Appl. Phys. A2014, 115, 979–984.

    Article  CAS  Google Scholar 

  53. Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale2014, 6, 4781–4788.

    Article  CAS  Google Scholar 

  54. Martín, A.; Wang, J. J.; Iacopino, D. Flexible SERS active substrates from ordered vertical Au nanorod arrays. RSC Adv.2014, 4, 20038–20043.

    Article  Google Scholar 

  55. Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann-Hogiu, S. Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci. Rep.2013, 3, 3396.

    Article  Google Scholar 

  56. Alyami, A.; Quinn, A. J.; Iacopino, D. Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta2019, 207, 58–64.

    Article  Google Scholar 

  57. Zuo, Z. W.; Zhu, K.; Gu, C.; Wen, Y. B.; Cui, G L.; Qu, J. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection. Appl. Surf. Sci.2016, 379, 66–72.

    Article  CAS  Google Scholar 

  58. Zhou, N. N.; Meng, G. W.; Huang, Z. L.; Ke, Y.; Zhou, Q. T.; Hu, X. Y. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst2016, 141, 5864–5869.

    Article  CAS  Google Scholar 

  59. Wang Y. C.; DuChene J. S.; Huo, F. W.; Wei, W. D. An in situ approach for facile fabrication of robust and scalable SERS substrates. Nanoscale2014, 6, 7232–7236.

    Article  CAS  Google Scholar 

  60. Gao, X. Y.; Feng, H. L.; Ma, J. M.; Zhang, Z. Y.; Lu, J. X.; Chen, Y. S.; Yang, S. E.; Gu, J. H. Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-oscillator model. Physica B Condens Matter2010, 405, 1922–1926.

    Article  CAS  Google Scholar 

  61. Tsui, K. H.; Lin, Q. F.; Chou, H. T.; Zhang, Q. P.; Fu, H. Y.; Qi, P. F.; Fan, Z. Y. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv. Mater.2014, 26, 2805–2811.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51871003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zewen Zuo.

Electronic Supplementary Material

12274_2021_3477_MOESM1_ESM.pdf

Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Z., Sun, L., Guo, Y. et al. Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering. Nano Res. 15, 317–325 (2022). https://doi.org/10.1007/s12274-021-3477-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3477-x

Keywords

Navigation