Skip to main content
Log in

Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: a Review

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the last two decades, plasmonic resonance in metallic nanoparticles (Au, Ag NPs) has created intensive research efforts in nanoscale optics, photonics and sensors. When light interacts with free electrons inside conductive nanoparticles (NPs) with small size as compared with incident wavelength, then at a particular resonant frequency, there is a localized surface plasmonic oscillation which strongly depends on geometry, size, composition and separation between nanoparticles. This interaction of electromagnetic wave is correlated with more enhancement of field intensity which leads to increase in excitation rate and quantum yields. In this review, the evolution of Localized surface plasmon resonance (LSPR) in the metallic nanostructures for enhancement of sensitivity of sensors has been elaborated. The challenges and benefits linked with different nanostructures and detection systems, along with these innovational addresses that have been evolved to enhance sensitivity and limits of detection, are also described in this review paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the references cited are available.

References

  1. Rifat AA, Mahdiraji GA, Sua YM, Shee YG, Ahmed R, Chow DM, Adikan FM (2015) Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol Lett 27:1628–1631. https://doi.org/10.1109/LPT.2015.2432812

    Article  CAS  Google Scholar 

  2. Wu T, Shao Y, Wang Y, Cao S, Cao W, Zhang F, Liao C, He J, Huang Y, Hou M, Wang Y (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25:20313–20322. https://doi.org/10.1364/OE.25.020313

    Article  CAS  PubMed  Google Scholar 

  3. Hadi F, Tavakkol S, Laurent S, Pirhajati V, Mahdavi SR, Neshastehriz A, Shakeri-Zadeh A (2019) Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto-plasmonic nanoparticles on MCF-7 breast cancer cells. J Cell Physiol 234:20028–20035. https://doi.org/10.1002/jcp.28599

    Article  CAS  PubMed  Google Scholar 

  4. Phan-Quang GC, Han X, Koh CS, Sim HY, Lay CL, Leong SX, Lee YH, Pazos-Perez N, Alvarez-Puebla RA, Ling XY (2019) Three-dimensional surface-enhanced Raman scattering platforms: large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage. Acc Chem Res 52:1844–1854. https://doi.org/10.1021/acs.accounts.9b00163

    Article  CAS  PubMed  Google Scholar 

  5. Che Y, Liu Q, Lu B, Zhai J, Wang K, Liu Z (2020) Plasmonic ternary hybrid photocatalyst based on polymeric gC 3 N 4 towards visible light hydrogen generation. Sci Rep 10:1–2. https://doi.org/10.1038/s41598-020-57493-x

    Article  CAS  Google Scholar 

  6. Yeshchenko OA, Golovynskyi S, Kudrya VY, Tomchuk AV, Dmitruk IM, Berezovska NI, Teselko PO, Zhou T, Xue B, Golovynska I, Lin D (2020) Laser-induced periodic Ag surface structure with Au nanorods plasmonic nanocavity metasurface for strong enhancement of adenosine nucleotide label-free photoluminescence imaging. ACS Omega. https://doi.org/10.1021/acsomega.0c01433

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325. https://doi.org/10.1002/smll.200701295

    Article  CAS  Google Scholar 

  8. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611. https://doi.org/10.1021/jp010657m

    Article  CAS  Google Scholar 

  9. Ringe E, Sharma B, Henry AI, Marks LD, Van Duyne RP (2013) Single nanoparticle plasmonics. Phys Chem. Chem Phys 15:4110–29. https://doi.org/10.1039/C3CP44574G; Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–90. https://doi.org/10.1038/nature02020; Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold− silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–33. https://doi.org/10.1021/jp990387w

  10. Powell AW, Wincott MB, Watt AA, Assender HE, Smith JM (2013) Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer. J Appl Phys 113:184311. https://doi.org/10.1063/1.4804964

    Article  CAS  Google Scholar 

  11. González AL, Noguez C, Barnard AS (2013) Mapping the structural and optical properties of anisotropic gold nanoparticles. J Mater Chem 1:3150–3157. https://doi.org/10.1039/C3TC30313F

    Article  Google Scholar 

  12. Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li X, Xia Y (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–477. https://doi.org/10.1021/nl047950t

    Article  CAS  PubMed  Google Scholar 

  13. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711. https://doi.org/10.1021/nl050127s

    Article  CAS  PubMed  Google Scholar 

  14. Hsu CW, DeLacy BG, Johnson SG, Joannopoulos JD, Soljacic M (2014) Theoretical criteria for scattering dark states in nanostructured particles. Nano lett 14:2783–2788. https://doi.org/10.1021/nl500340n

    Article  CAS  PubMed  Google Scholar 

  15. Roy D, Xu Y, Rajendra R, Wu L, Bai P, Ballav N (2020) Gold Nanoearbuds: seed-mediated synthesis and the emergence of three plasmonic peaks. J Phys Chem Lett 11:3211–3217. https://doi.org/10.1021/acs.jpclett.0c00838

    Article  CAS  PubMed  Google Scholar 

  16. Lin H, Song L, Huang Y, Cheng Q, Yang Y, Guo Z, Chen T (2020) Macroscopic Au@ PANI core/shell nanoparticle superlattice monolayer film with dual-responsive plasmonic switches. ACS Appl Mater Interface 12:11296–11304. https://doi.org/10.1021/acsami.0c01983

    Article  CAS  Google Scholar 

  17. Osminkina LA, Žukovskaja O, Agafilushkina SN, Kaniukov E, Stranik O, Gonchar KA, Sivakov V (2020) Gold nanoflowers grown in a porous Si/SiO2 matrix: the fabrication process and plasmonic properties. Appl Surf Sci 507:144989. https://doi.org/10.1016/j.apsusc.2019.144989

    Article  CAS  Google Scholar 

  18. Mayer M, Steiner AM, Röder F, Formanek P, König TA, Fery A (2017) Aqueous gold overgrowth of silver nanoparticles: merging the plasmonic properties of silver with the functionality of gold. Angew Chem Int Ed 56:15866–15870. https://doi.org/10.1002/anie.201708398

    Article  CAS  Google Scholar 

  19. Petica A, Florea A, Gaidau C, Balan D, Anicai L (2019) Synthesis and characterization of silver-titania nanocomposites prepared by electrochemical method with enhanced photocatalytic characteristics, antifungal and antimicrobial activity. J Mater Sci Technol 8:41–53. https://doi.org/10.1016/j.jmrt.2017.09.009

    Article  CAS  Google Scholar 

  20. Liu Y, Plate P, Hinrichs V, Köhler T, Song M, Manley P, Schmid M, Bartsch P, Fiechter S, Lux-Steiner MC, Fischer CH (2017) Size-and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation. J Nanopart Res 19:141. https://doi.org/10.1007/s11051-017-3834-6

    Article  CAS  Google Scholar 

  21. Al-Masoodi AH, Nazarudin NF, Nakajima H, Tunmee S, Goh BT, Abd Majid WH (2020) Controlled growth of silver nanoparticles on indium tin oxide substrates by plasma-assisted hot-filament evaporation: physical properties, composition, and electronic structure. Thin Solid Films 693:137686. https://doi.org/10.1016/j.tsf.2019.137686

    Article  CAS  Google Scholar 

  22. Basova TV, Hassan A, Morozova NB (2019) Chemistry of gold (I, III) complexes with organic ligands as potential MOCVD precursors for fabrication of thin metallic films and nanoparticles. Coord Chem Rev 380:58–82. https://doi.org/10.1016/j.ccr.2018.09.005

    Article  CAS  Google Scholar 

  23. Silva-De Hoyos LE, Sanchez-Mendieta V, Camacho-Lopez MA, Trujillo-Reyes J, Vilchis-Nestor AR (2020) Plasmonic and fluorescent sensors of metal ions in water based on biogenic gold nanoparticles. Arab J Chem 13:1975–1985. https://doi.org/10.1016/j.arabjc.2018.02.016

    Article  CAS  Google Scholar 

  24. Alonso A, Macanás J, Shafir A, Muñoz M, Vallribera A, Prodius D, Melnic S, Turta C, Muraviev DN (2010) Donnan-exclusion-driven distribution of catalytic ferromagnetic nanoparticles synthesized in polymeric fibers. Dalton Trans 39:2579–2586. https://doi.org/10.1039/B917970D

    Article  CAS  PubMed  Google Scholar 

  25. Bhalla N, Jain A, Lee Y, Shen AQ, Lee D (2019) Dewetting metal nanofilms—effect of substrate on refractive index sensitivity of nanoplasmonic gold. Nanomaterials 9:1530. https://doi.org/10.3390/nano9111530

    Article  CAS  PubMed Central  Google Scholar 

  26. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857. https://doi.org/10.1021/cr100313v

    Article  CAS  PubMed  Google Scholar 

  27. Younis MR, Wang C, An R, Wang S, Younis MA, Li ZQ, Wang Y, Ihsan A, Ye D, Xia XH (2019) Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 13:2544–2557. https://doi.org/10.1021/acsnano.8b09552

    Article  CAS  PubMed  Google Scholar 

  28. Yaraki MT, Rezaei SD, Tan YN (2020) Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Phys Chem Chem Phys 22:5673–5687. https://doi.org/10.1039/C9CP06029D

    Article  Google Scholar 

  29. Chen YC, Fan X (2019) Biological lasers for biomedical applications. Adv Opt Mater 7:1900377. https://doi.org/10.1002/adom.201900377

    Article  CAS  Google Scholar 

  30. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photo thermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217. https://doi.org/10.1007/s10103-007-0470-x

    Article  PubMed  Google Scholar 

  31. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. https://doi.org/10.1021/ja057254a

    Article  CAS  PubMed  Google Scholar 

  32. Pustovalov VK, Astafyeva LG, Galanzha E, Zharov VP (2010) Thermo-optical analysis and selection of the properties of absorbing nanoparticles for laser applications in cancer nanotechnology. Cancer Nanotechnol 1:35–46. https://doi.org/10.1007/s12645-010-0005-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thatai S, Khurana P, Prasad S, Kumar D (2015) Plasmonic detection of Cd2+ ions using surface-enhanced Raman scattering active core–shell nanocomposite. Talanta 134:568–575. https://doi.org/10.1016/j.talanta.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  34. Khurana P, Thatai S, Prasad S, Soni S, Kumar D (2016) Ag core–Au shell bimetallic nanocomposites: gold shell thickness dependent study for SERS enhancement. Microchem J 124:819–823. https://doi.org/10.1016/j.microc.2015.10.009

    Article  CAS  Google Scholar 

  35. Thatai S, Khurana P, Boken J, Prasad S, Kumar D (2014) Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem J 116:62–76. https://doi.org/10.1016/j.microc.2014.04.001

    Article  CAS  Google Scholar 

  36. Khurana P, Thatai S, Boken J, Prasad S, Kumar D (2015) Development of promising surface enhanced Raman scattering substrate: Freckled SiO2@ Au nanocomposites. Microchem J 122:45–49. https://doi.org/10.1016/j.microc.2015.03.014

    Article  CAS  Google Scholar 

  37. Fong KE, Yung LY (2013) Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale 5:12043–12071. https://doi.org/10.1039/C3NR02257A

    Article  CAS  PubMed  Google Scholar 

  38. Gellé A, Moores A (2019) Plasmonic nanoparticles: photocatalysts with a bright future. Curr Opin 15:60–66. https://doi.org/10.1016/j.cogsc.2018.10.002

    Article  Google Scholar 

  39. Hernández Y, Galarreta BC (2019) Noble metal-based plasmonic nanoparticles for SERS imaging and photothermal therapy. Nanomaterials for Magnetic and Optical Hyperthermia Applications 83–109.https://doi.org/10.1016/B978-0-12-813928-8.00004-1

  40. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422. https://doi.org/10.1126/science.1089171

    Article  CAS  PubMed  Google Scholar 

  41. Prodan E, Nordlander PJCP (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454. https://doi.org/10.1063/1.1647518

    Article  CAS  PubMed  Google Scholar 

  42. Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano let 4:1323–1327. https://doi.org/10.1021/nl049597x

    Article  CAS  Google Scholar 

  43. Brandl DW, Oubre C, Nordlander P (2005) Plasmon hybridization in nanoshell dimers. J Chem Phys 123:024701. https://doi.org/10.1063/1.1949169

    Article  CAS  Google Scholar 

  44. Moradi A (2008) Plasmon hybridization in metallic nanotubes. J Phys Chem Solids 69:2936–2938. https://doi.org/10.1016/j.jpcs.2008.08.004

    Article  CAS  Google Scholar 

  45. Moradi A (2009) Plasmon hybridization in metallic nanotubes with a nonconcentric core. Opt Commun 282:3368–3370. https://doi.org/10.1016/j.optcom.2009.05.016

    Article  CAS  Google Scholar 

  46. Moradi A (2012) Plasmon hybridization in coated metallic nanowires. JOSA B 29:625–629. https://doi.org/10.1364/JOSAB.29.000625

    Article  CAS  Google Scholar 

  47. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano lett 4:899–903. https://doi.org/10.1021/nl049681c

    Article  CAS  Google Scholar 

  48. Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4:2209–2213. https://doi.org/10.1021/nl0486160

    Article  CAS  Google Scholar 

  49. Le F, Lwin NZ, Halas NJ, Nordlander P (2007) Plasmonic interactions between a metallic nanoshell and a thin metallic film. Phys Rev B 76:165410. https://doi.org/10.1103/PhysRevB.76.165410

    Article  CAS  Google Scholar 

  50. Shan H, Yu Y, Wang X, Luo Y, Zu S, Du B, Fang Z (2019) Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci Appl 8:1–9. https://doi.org/10.1038/s41377-019-0121-6.10.1038/s41377-019-0126-1

    Article  CAS  Google Scholar 

  51. Li Q, Gao J, Yang H, Liu H, Wang X, Li Z, Guo X (2017) Tunable plasmonic absorber based on propagating and localized surface plasmons using metal-dielectric-metal structure. Plasmonics 12:1037–1043. https://doi.org/10.1007/s11468-016-0356-5

    Article  CAS  Google Scholar 

  52. Hoang CV, Hayashi K, Ito Y, Gorai N, Allison G, Shi X, Misawa H (2017) Interplay of hot electrons from localized and propagating plasmons. Nat Commun 8:1–8. https://doi.org/10.1038/s41467-017-00815-x

    Article  CAS  Google Scholar 

  53. Lévêque G, Martin OJ (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14:9971–9981. https://doi.org/10.1364/OE.14.009971

    Article  PubMed  Google Scholar 

  54. Weber T, Kiel T, Irsen S, Busch K, Linden S (2017) Near-field study on the transition from localized to propagating plasmons on 2D nano-triangles. Opt Express 25:16947–16956. https://doi.org/10.1364/OE.25.016947

    Article  CAS  PubMed  Google Scholar 

  55. Cui W, Peng W, Yu L, Luo X, Gao H, Chu S, Masson JF (2019) Hybrid nanodisk film for ultra-narrowband filtering, near-perfect absorption and wide range sensing. Nanomaterials 9:334. https://doi.org/10.3390/nano9030334

    Article  CAS  PubMed Central  Google Scholar 

  56. Yildiz BC, Habib M, Rashed AR, Caglayan H (2019) Hybridized plasmon modes in a system of metal thin film–nanodisk array. J Appl Phys 126:113104. https://doi.org/10.1063/1.5115818

    Article  CAS  Google Scholar 

  57. Cui X, Lai Y, Qin F, Shao L, Wang J, Lin HQ (2020) Strengthening Fano resonance on gold nanoplates with gold nanospheres. Nanoscale 12:1975–1984. https://doi.org/10.1039/C9NR09976J

    Article  CAS  PubMed  Google Scholar 

  58. Chu S, Liang Y, Yuan H, Gao H, Yu L, Wang Q, Peng W (2020) Plasmonic hybridization generation in self-aligned disk/hole nanocavities for multi-resonance sensing. Opt Express 28:36455–36465. https://doi.org/10.1364/OE.411773

    Article  CAS  PubMed  Google Scholar 

  59. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094. https://doi.org/10.1039/B517615H

    Article  CAS  PubMed  Google Scholar 

  60. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys 110:7238–7248. https://doi.org/10.1021/jp057170o

    Article  CAS  Google Scholar 

  61. Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41. https://doi.org/10.1021/la0513353

    Article  CAS  PubMed  Google Scholar 

  62. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano lett 3:1057–1062. https://doi.org/10.1021/nl034372s

    Article  CAS  Google Scholar 

  63. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791. https://doi.org/10.1039/B711490G

    Article  CAS  PubMed  Google Scholar 

  64. Tan Y, Li Y, Zhu D (2002) Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent. Langmuir 18:3392–3395. https://doi.org/10.1021/la011612f

    Article  CAS  Google Scholar 

  65. Manoharan H, Dharanibalaji KC, Sai VV (2020) Controlled in situ seed-mediated growth of gold and silver nanoparticles on an optical fiber platform for plasmonic sensing applications. Plasmonics 15:51–60. https://doi.org/10.1007/s11468-019-01008-6

    Article  CAS  Google Scholar 

  66. Rathee N, Jaggi N (2018a) Homogeneous plasmonic Au nanoparticles fabrication using in situ substrate heating by sputtering. Plasmonics 13:2175–2182. https://doi.org/10.1007/s11468-018-0735-1

    Article  CAS  Google Scholar 

  67. Personick ML, Langille MR, Wu J, Mirkin CA (2013) Synthesis of gold hexagonal bipyramids directed by planar-twinned silver triangular nanoprisms. J Am Chem Soc 135:3800–3803. https://doi.org/10.1021/ja400794q

    Article  CAS  PubMed  Google Scholar 

  68. Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloid Surf A 256:111–115. https://doi.org/10.1016/j.colsurfa.2004.12.058

    Article  CAS  Google Scholar 

  69. Song YZ, Li X, Song Y, Cheng ZP, Zhong H, Xu JM, Lu JS, Wei CG, Zhu AF, Wu FY, Xu J (2013) Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application. Russ J Phys Chem A 87:74–79. https://doi.org/10.1134/S0036024413010275

    Article  CAS  Google Scholar 

  70. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. https://doi.org/10.1021/ja047846d

    Article  CAS  PubMed  Google Scholar 

  71. Sato T, Kuroda S, Takami A, Yonezawa Y, Hada H (1991) Photochemical formation of silver-gold (Ag Au) composite colloids in solutions containing sodium alginate. Appl Organomet Chem 5:261–268. https://doi.org/10.1002/aoc.590050409

    Article  CAS  Google Scholar 

  72. Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y, Scheper T (2009) Electrochemical method for the synthesis of silver nanoparticles. J Nanopart Res 11:1193–1200. https://doi.org/10.1007/s11051-008-9513-x

    Article  CAS  Google Scholar 

  73. Alissawi N, Zaporojtchenko V, Strunskus T, Kocabas I, Chakravadhanula VS, Kienle L, Garbe-Schönberg D, Faupel F (2013) Effect of gold alloying on stability of silver nanoparticles and control of silver ion release from vapor-deposited Ag–Au/polytetrafluoroethylene nanocomposites. Gold Bull 46:3–11. https://doi.org/10.1007/s13404-012-0073-6

    Article  CAS  Google Scholar 

  74. Niidome Y, Nishioka K, Kawasaki H, Yamada S (2003) Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem Comm 18:2376–2377. https://doi.org/10.1039/B307836A

    Article  Google Scholar 

  75. Maretti L, Billone PS, Liu Y, Scaiano JC (2009) Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J Am Chem Soc 131:13972–13980. https://doi.org/10.1021/ja900201k

    Article  CAS  PubMed  Google Scholar 

  76. Gopinath K, Venkatesh KS, Ilangovan R, Sankaranarayanan K, Arumugam A (2013) Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind Crops Prod 50:737–742. https://doi.org/10.1016/j.indcrop.2013.08.060

    Article  CAS  Google Scholar 

  77. Bhat R, Sharanabasava VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A (2013) Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B 125:63–69. https://doi.org/10.1016/j.jphotobiol.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  78. Lu Y, Yin Y, Li ZY, Xia Y (2002) Synthesis and self-assembly of Au@ SiO2 core−shell colloids. Nano Lett 2:785–788. https://doi.org/10.1021/nl025598i

    Article  CAS  Google Scholar 

  79. An H, Lv Z, Zhang K, Deng C, Wang H, Xu Z, Yin Z (2021) Plasmonic coupling enhancement of core-shell Au@ Pt assemblies on ZnIn2S4 nanosheets towards photocatalytic H2 production. Appl Surf Sci 536:147934. https://doi.org/10.1016/j.apsusc.2020.147934

    Article  CAS  Google Scholar 

  80. Devaraj V, Lee JM, Oh JW (2018) Distinguishable plasmonic nanoparticle and gap mode properties in a silver nanoparticle on a gold film system using three-dimensional FDTD simulations. Nanomaterials 8:582. https://doi.org/10.3390/nano8080582

    Article  CAS  PubMed Central  Google Scholar 

  81. Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3:2776–2788. https://doi.org/10.1021/nn900664j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Khlebtsov NG (2000) An approximate method for calculating scattering and absorption of light by fractal aggregates. Opt Spectrosc 88:594–601. https://doi.org/10.1134/1.626844

    Article  CAS  Google Scholar 

  83. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. Josa a 11:1491–1499. https://doi.org/10.1364/JOSAA.11.001491

    Article  Google Scholar 

  84. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192. https://doi.org/10.1146/annurev.physchem.040808.090434

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzán LM (2005) Silica coating of silver nanoparticles using a modified Stöber method. J Colloid Interf Sci 283:392–396. https://doi.org/10.1016/j.jcis.2004.08.184

    Article  CAS  Google Scholar 

  86. Roh S, Chung T, Lee B (2011) Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors. Sensors 11:1565–1588. https://doi.org/10.3390/s110201565

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano lett 5:2034–2038. https://doi.org/10.1021/nl0515753

    Article  CAS  PubMed  Google Scholar 

  88. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901. https://doi.org/10.1016/j.ccr.2005.01.030

    Article  CAS  Google Scholar 

  89. Wang C, Irudayaraj J (2008) Gold nanorod probes for the detection of multiple pathogens. Small 4:2204–2208. https://doi.org/10.1002/smll.200800309

    Article  CAS  PubMed  Google Scholar 

  90. Jain PK, El-Sayed MA (2007) Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells. J Phys Chem C 111:17451–17454. https://doi.org/10.1021/jp0773177

    Article  CAS  Google Scholar 

  91. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305. https://doi.org/10.1021/ac0258352

    Article  CAS  PubMed  Google Scholar 

  92. Lin Y, Zou Y, Mo Y, Guo J, Lindquist RG (2010) E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors 10:9397–9406. https://doi.org/10.3390/s101009397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509. https://doi.org/10.1021/ac015657x

    Article  CAS  PubMed  Google Scholar 

  94. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237. https://doi.org/10.1021/la800305j

    Article  CAS  PubMed  Google Scholar 

  95. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491. https://doi.org/10.1021/nl0340475

    Article  CAS  Google Scholar 

  96. Aherne D, Charles DE, Brennan-Fournet ME, Kelly JM, YK Gun’ko, (2009) Etching-resistant silver nanoprisms by epitaxial deposition of a protecting layer of gold at the edges. Langmuir 25:10165–10173. https://doi.org/10.1021/la9009493

    Article  CAS  PubMed  Google Scholar 

  97. Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256–1263. https://doi.org/10.1021/nl0701612

    Article  CAS  PubMed  Google Scholar 

  98. Liang J, Li K, Gurzadyan GG, Lu X, Liu B (2012) Silver nanocube-enhanced far-red/near-infrared fluorescence of conjugated polyelectrolyte for cellular imaging. Langmuir 28:11302–11309. https://doi.org/10.1021/la302511e

    Article  CAS  PubMed  Google Scholar 

  99. Niu C, Song Q, He G, Na N, Ouyang J (2016) Near-infrared-fluorescent probes for bioapplications based on silica-coated gold nanobipyramids with distance-dependent plasmon-enhanced fluorescence. Anal Chem 88:11062–11069. https://doi.org/10.1021/acs.analchem.6b03034

    Article  CAS  PubMed  Google Scholar 

  100. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7:690–696. https://doi.org/10.1021/nl062795z

    Article  CAS  PubMed  Google Scholar 

  101. Khurgin JB, Sun G, Soref RA (2007) Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit. JOSA B 24:1968–1980. https://doi.org/10.1364/JOSAB.24.001968

    Article  CAS  Google Scholar 

  102. Li C, Zhu Y, Zhang X, Yang X, Li C (2012) Metal-enhanced fluorescence of carbon dots adsorbed Ag@ SiO2 core-shell nanoparticles. RSC Adv 2:1765–1768. https://doi.org/10.1039/C2RA01032A

    Article  CAS  Google Scholar 

  103. Ray K, Badugu R, Lakowicz JR (2006a) Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. J Am Chem Soc 128:8998–8999. https://doi.org/10.1021/ja061762i

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308–1346. https://doi.org/10.1039/B802918K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kümmerlen J, Leitner A, Brunner H, Aussenegg FR, Wokaun A (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80:1031–1046. https://doi.org/10.1080/00268979300102851

    Article  Google Scholar 

  106. Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2004) Roughened silver electrodes for use in metal-enhanced fluorescence. Spectrochim Acta A Mol Biomol Spectrasc 60:1977–1983. https://doi.org/10.1016/j.saa.2003.10.014

    Article  CAS  Google Scholar 

  107. Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266. https://doi.org/10.1021/es902240k

    Article  CAS  PubMed  Google Scholar 

  108. Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13:233–244. https://doi.org/10.1007/s11051-010-0022-3

    Article  CAS  Google Scholar 

  109. Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605. https://doi.org/10.1021/nn100869j

    Article  CAS  Google Scholar 

  110. Li H, Chen CY, Wei X, Qiang W, Li Z, Cheng Q, Xu D (2012) Highly sensitive detection of proteins based on metal-enhanced fluorescence with novel silver nanostructures. Anal Chem 84:8656–8662. https://doi.org/10.1021/ac301787x

    Article  CAS  PubMed  Google Scholar 

  111. Yang B, Lu N, Qi D, Ma R, Wu Q, Hao J, Liu X, Mu Y, Reboud V, Kehagias N, Torres CM (2010) Tuning the intensity of metal-enhanced fluorescence by engineering silver nanoparticle arrays. Small 6:1038–1043. https://doi.org/10.1002/smll.200902350

    Article  CAS  PubMed  Google Scholar 

  112. Corrigan TD, Guo S, Phaneuf RJ, Szmacinski H (2005) Enhanced fluorescence from periodic arrays of silver nanoparticles. J Fluoresc 15:777. https://doi.org/10.1007/s10895-005-2987-3

    Article  CAS  PubMed  Google Scholar 

  113. Pang J, Theodorou IG, Centeno A, Petrov PK, Alford NM, Ryan MP, Xie F (2017) Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors. J Mater Chem 5:917–925. https://doi.org/10.1039/C6TC04965F

    Article  CAS  Google Scholar 

  114. Alloisio M, Rusu M, Ottonello S, Ottonelli M, Thea S, Comoretto D (2016) Synthesis of fluorescent core-shell metal nanohybrids: a versatile approach. Materials 9:997. https://doi.org/10.3390/ma9120997

    Article  CAS  PubMed Central  Google Scholar 

  115. Hu PP, Zheng LL, Zhan L, Li JY, Zhen SJ, Liu H, Luo LF, Xiao GF, Huang CZ (2013) Metal-enhanced fluorescence of nano-core–shell structure used for sensitive detection of prion protein with a dual-aptamer strategy. Anal Chim Acta 787:239–245. https://doi.org/10.1016/j.aca.2013.05.061

    Article  CAS  PubMed  Google Scholar 

  116. Dong M, Tian Y, Pappas D (2014) Facile functionalization of Ag@ SiO 2 core–shell metal enhanced fluorescence nanoparticles for cell labeling. Anal Methods 6:1598–1602. https://doi.org/10.1039/C3AY42150C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261. https://doi.org/10.1021/cm303708p

    Article  CAS  Google Scholar 

  118. Sun B, Wang C, Han S, Hu Y, Zhang L (2016) Metal-enhanced fluorescence-based multilayer core–shell Ag-nanocube@ SiO 2@ PMOs nanocomposite sensor for Cu 2+ detection. RSC adv 6:61109–61118. https://doi.org/10.1039/C6RA11598E

    Article  CAS  Google Scholar 

  119. Cui Q, He F, Wang X, Xia B, Li L (2013) Gold nanoflower@ gelatin core–shell nanoparticles loaded with conjugated polymer applied for cellular imaging. ACS Appl Mater Interfaces 5:213–219. https://doi.org/10.1021/am302589g

    Article  CAS  PubMed  Google Scholar 

  120. Xue B, Wang D, Zuo J, Kong X, Zhang Y, Liu X, Tu L, Chang Y, Li C, Wu F, Zeng Q (2015) Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity. Nanoscale 7:8048–8057. https://doi.org/10.1039/C4NR06901C

    Article  CAS  PubMed  Google Scholar 

  121. Zhang C, Han Q, Li C, Zhang M, Yan L, Zheng H (2016) Metal-enhanced fluorescence of single shell-isolated alloy metal nanoparticle. Appl Opt 55:9131–9136. https://doi.org/10.1364/AO.55.009131

    Article  CAS  PubMed  Google Scholar 

  122. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217. https://doi.org/10.1021/jp984796o

    Article  CAS  Google Scholar 

  123. Okamoto T, Yamaguchi I, Kobayashi T (2000) Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt Lett 25:372–374. https://doi.org/10.1364/OL.25.000372

    Article  CAS  PubMed  Google Scholar 

  124. Rathee N, Jaggi N (2018b) Hydrogen peroxide detection by hybrid Au–CdSe QDs: an indirect approach for sensing glucose level. Appl Nanosci 8:2031–2038. https://doi.org/10.1007/s13204-018-0881-y

    Article  CAS  Google Scholar 

  125. Ray K, Badugu R, Lakowicz JR (2006b) Distance-dependent metal-enhanced fluorescence from Langmuir−Blodgett monolayers of alkyl-NBD derivatives on silver island films. Langmuir 22:8374–8378. https://doi.org/10.1021/la061058f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Alughare ZE, Paulo PM (2017) Gold nanorods functionalized with DNA oligonucleotide probes for biosensing and plasmon-enhanced fluorescence detection (Doctoral dissertation).http://hdl.handle.net/10400.1/10706

  127. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotech 16:55–62. https://doi.org/10.1016/j.copbio.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  128. Zenin VA, Andryieuski A, Malureanu R, Radko IP, Volkov VS, Gramotnev DK, Lavrinenko AV, Bozhevolnyi SI (2015) Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett 15:8148–8154. https://doi.org/10.1021/acs.nanolett.5b03593

    Article  CAS  PubMed  Google Scholar 

  129. Demir HV, Martínez PL, Govorov A (2016) Understanding and modeling Förster-type resonance energy transfer (FRET): FRET-applications. Springer. https://doi.org/10.1007/978-981-10-1876-3_1

    Article  Google Scholar 

  130. Le Ru E, Etchegoin P (2008) Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier.

  131. Muniz-Miranda M, Pergolese B, Bigotto A, Giusti A (2007) Stable and efficient silver substrates for SERS spectroscopy. J Colloid Interf Sci 314:540–544. https://doi.org/10.1016/j.jcis.2007.05.089

    Article  CAS  Google Scholar 

  132. Ma Z, Tian L, Qiang H (2009) A facile approach for self-assembled gold nanorods monolayer films and application in surface-enhanced Raman spectroscopy. J Nanosci Nanotechnol 9:6716–6720. https://doi.org/10.1166/jnn.2009.1365

    Article  CAS  PubMed  Google Scholar 

  133. Wang C, Chen Y, Ma Z, Wang T, Su Z (2008) Generalized fabrication of surfactant-stabilized anisotropic metal nanoparticles to amino-functionalized surfaces: application to surface-enhanced Raman spectroscopy. J Nanosci Nanotechnol 8:5887–5895. https://doi.org/10.1166/jnn.2008.222

    Article  CAS  PubMed  Google Scholar 

  134. Lee SJ, Baik JM, Moskovits M (2008) Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver nanowire. Nano Lett 8:3244–3247. https://doi.org/10.1021/nl801603j

    Article  CAS  PubMed  Google Scholar 

  135. Andrade GF, Fan M, Brolo AG (2010) Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens Bioelectron 25:2270–2275. https://doi.org/10.1016/j.bios.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  136. Lucotti A, Pesapane A, Zerbi G (2007) Use of a geometry optimized fiber-optic surface-enhanced Raman scattering sensor in trace detection. Appl Spectrosc 61 260 268 https://www.osapublishing.org/as/abstract.cfm?URI=as-61-3-260

  137. Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599. https://doi.org/10.1002/smll.200800337

    Article  CAS  PubMed  Google Scholar 

  138. Fan M, Brolo AG (2008) Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability. Chem Phys Chem 9:1899–1907. https://doi.org/10.1002/cphc.200800099

    Article  CAS  PubMed  Google Scholar 

  139. Addison CJ, Brolo AG (2006) Nanoparticle-containing structures as a substrate for surface-enhanced Raman scattering. Langmuir 22:8696–8702. https://doi.org/10.1021/la061598c

    Article  CAS  PubMed  Google Scholar 

  140. Fan M, Brolo AG (2009) Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys 11:7381–7389. https://doi.org/10.1039/B904744A

    Article  CAS  PubMed  Google Scholar 

  141. Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Käll M (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78:802–804. https://doi.org/10.1063/1.1344225

    Article  CAS  Google Scholar 

  142. Israelsen ND, Hanson C, Vargis E (2015) Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction. Sci. World J. https://doi.org/10.1155/2015/124582

  143. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090. https://doi.org/10.1021/nl034197f

    Article  CAS  Google Scholar 

  144. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285. https://doi.org/10.1021/jp050508u

    Article  CAS  PubMed  Google Scholar 

  145. Zheng J, He L (2014) Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr Rev Food Sci Food Saf 13:317–328. https://doi.org/10.1111/1541-4337.12062

    Article  CAS  PubMed  Google Scholar 

  146. Pilot R (2018) SERS detection of food contaminants by means of portable Raman instruments. J Raman Spectrosc 49:954–981. https://doi.org/10.1002/jrs.5400

    Article  CAS  Google Scholar 

  147. Hakonen A, Rindzevicius T, Schmidt MS, Andersson PO, Juhlin L, Svedendahl M, Boisen A, Käll M (2016) Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale 8:1305–1308. https://doi.org/10.1039/C5NR06524K

    Article  CAS  PubMed  Google Scholar 

  148. Hakonen A, Andersson PO, Schmidt MS, Rindzevicius T, Käll M (2015) Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta 893:1–3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, NIT Kurukshetra and also acknowledge Council of Scientific and Industrial Research, New Delhi for serving the financial support of the project No. 03(1440)/18/EMR-II.

Funding

The research was financially supported by the Director, NIT Kurukshetra and Council of Scientific and Industrial Research, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have the same contributions.

Corresponding author

Correspondence to Neena Jaggi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, K., Jaggi, N. Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: a Review. Plasmonics 16, 981–999 (2021). https://doi.org/10.1007/s11468-021-01381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01381-1

Keywords

Navigation