Skip to main content

Advertisement

Log in

Synthesis of lateral heterostructure of 2D materials for optoelectronic devices: challenges and opportunities

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In the increasing demands for exotic device development in the fields of electronics, optoelectronics, sensors, energy, integrated circuits, and quantum technologies, 2D heterostructures can offer tremendous possibilities to sustain Moore’s law. Despite considerable efforts in integrating distinct 2D materials, incomplete understanding of the role of native defects, poor mobility, stability, and low quantum yield poses many challenges for the overall performance of most heterostructure-based devices. In this review, we explore the recent development in the synthesis, strategies for interface modulation, structure–property optimization, and nanofabrication technologies of 2D lateral assembly. Specifically, chemical vapor deposition (CVD) methods and adopting phase and doping engineering for the reliable development of lateral heterostructures are explored in detail. The traditional phase engineering is extrapolated to understand the role of metal/2D semiconductors contact interface, essentially bridging metallic 2D materials as contacts to traditional metal electrodes. The applications of these integrated 2D lateral heterostructures as an active component of many optoelectronics including p-n junction diodes, high-performance transistors, LED, photosensors, and photovoltaics are highlighted. Moreover, we underline the challenges and outlooks to increase the library of 2D lateral geometry in high phase purity and excellent controllability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.F. Brennan, A.S. Brown, Theory of modern electronic semiconductor devices. (Wiley Online Library, 2002).

  2. Z. Li et al., Intrinsic region length scaling of heavily doped carbon nanotube p–i–n junctions. Nanoscale 5, 6999–7004 (2013)

    Article  CAS  Google Scholar 

  3. X. Wang et al., Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013)

    Article  CAS  Google Scholar 

  4. X. Jiang et al., Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides. Appl. Phys. Lett. 104, 193510 (2014)

    Article  CAS  Google Scholar 

  5. Á. Szabó et al., Ab initio simulation of single- and few-layer MoS2 transistors: effect of electron-phonon scattering. Phys. Rev. B 92, 35435 (2015)

    Article  CAS  Google Scholar 

  6. Y. Zhou et al., Spin filtering effect and magnetoresistance in zigzag 6, 6, 12-graphyne nanoribbon system. Carbon N. Y. 76, 175–182 (2014)

    Article  CAS  Google Scholar 

  7. Y. An et al., The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions. J. Mater. Chem. C 4, 10962–10966 (2016)

    Article  CAS  Google Scholar 

  8. X.-K. Chen et al., Phonon wave interference in graphene and boron nitride superlattice. Appl. Phys. Lett. 109, 023101 (2016)

    Article  CAS  Google Scholar 

  9. Y. Gong et al., Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 5, 3193 (2014)

    Article  CAS  Google Scholar 

  10. Y. Xie et al., Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019)

    Article  CAS  Google Scholar 

  11. L. Li et al., Plasmon Excited Ultrahot carriers and negative differential photoresponse in a vertical graphene van der Waals heterostructure. Nano Lett. 19, 3295–3304 (2019)

    Article  CAS  Google Scholar 

  12. K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  13. C. Lee et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321, 385–388 (2008)

    Article  CAS  Google Scholar 

  14. Y. Zhang et al., Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  CAS  Google Scholar 

  15. Y. Lin et al., Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett. 1, 277–283 (2010)

    Article  CAS  Google Scholar 

  16. Q. Weng et al., Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45, 3989–4012 (2016)

    Article  CAS  Google Scholar 

  17. R. Lv et al., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48, 56–64 (2015)

    Article  CAS  Google Scholar 

  18. C. Tan et al., Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015)

    Article  CAS  Google Scholar 

  19. H. Liu et al., Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015)

    Article  CAS  Google Scholar 

  20. P. Chen et al., The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater 5, 14002 (2017)

    Article  CAS  Google Scholar 

  21. A. Kara et al., A review on silicene — new candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012)

    Article  CAS  Google Scholar 

  22. S. Xie et al., Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science. 359, 1131–1136 (2018)

    Article  CAS  Google Scholar 

  23. S. Feng, Z. Lin, X. Gan, R. Lv, M. Terrones, Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horiz. 2, 72–80 (2017)

    Article  CAS  Google Scholar 

  24. A. Hasani, M. Tekalgne, Q. Van Le, H.W. Jang, S.Y. Kim, Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A 7, 430–454 (2019)

    Article  CAS  Google Scholar 

  25. Y. Sun et al., Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chemie Int. Ed. 51, 8727–8731 (2012)

    Article  CAS  Google Scholar 

  26. T. Yang et al., Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017)

    Article  CAS  Google Scholar 

  27. A.K. Geim, I.V. Van der Grigorieva, Waals heterostructures. Nature 499, 419–425 (2013)

    Article  CAS  Google Scholar 

  28. L. Britnell et al., Strong light-matter interactions in heterostructures of atomically thin films. Science 340(80), 1311–1314 (2013)

    Article  CAS  Google Scholar 

  29. H. Wang et al., Semiconductor heterojunction photocatalysts: design{,} construction{,} and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014)

    Article  CAS  Google Scholar 

  30. S.S. Chou et al., Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 6, 8311 (2015)

    Article  CAS  Google Scholar 

  31. K. Roy et al., Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826–830 (2013)

    Article  CAS  Google Scholar 

  32. A. Pospischil, M.M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014)

    Article  CAS  Google Scholar 

  33. C.-H. Lee et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014)

    Article  CAS  Google Scholar 

  34. W.J. Yu et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013)

    Article  CAS  Google Scholar 

  35. F. Withers et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015)

    Article  CAS  Google Scholar 

  36. W. Xu et al., Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2017)

    Article  CAS  Google Scholar 

  37. Y.-C. Lin et al., Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015)

    Article  CAS  Google Scholar 

  38. D. Sarkar et al., A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015)

    Article  CAS  Google Scholar 

  39. K. Kang et al., Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017)

    Article  CAS  Google Scholar 

  40. S.J. Haigh et al., Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012)

    Article  CAS  Google Scholar 

  41. W. Yang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013)

    Article  CAS  Google Scholar 

  42. H. Liu et al., Fluorescence concentric triangles: a case of chemical heterogeneity in WS2 atomic monolayer. Nano Lett. 16, 5559–5567 (2016)

    Article  CAS  Google Scholar 

  43. Y. Rong et al., Electroluminescence dynamics across grain boundary regions of monolayer tungsten disulfide. ACS Nano 10, 1093–1100 (2016)

    Article  CAS  Google Scholar 

  44. A. Azizi et al., Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 5, 4867 (2014)

    Article  CAS  Google Scholar 

  45. D. Van Tuan et al., Scaling properties of charge transport in polycrystalline graphene. Nano Lett. 13, 1730–1735 (2013)

    Article  CAS  Google Scholar 

  46. X. Duan et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014)

    Article  CAS  Google Scholar 

  47. Y. Gong et al., Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015)

    Article  CAS  Google Scholar 

  48. Y. Gong et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)

    Article  CAS  Google Scholar 

  49. C. Huang et al., Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014)

    Article  CAS  Google Scholar 

  50. M.Y. Li et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science. 349, 524–528 (2015)

    Article  CAS  Google Scholar 

  51. Z. Zhang et al., Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science. 357, 788–792 (2017)

    Article  CAS  Google Scholar 

  52. Y. Zhang et al., Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv. Mater. 30, 1803665 (2018)

    Article  CAS  Google Scholar 

  53. W.S. Leong et al., Synthetic lateral metal-semiconductor heterostructures of transition metal disulfides. J. Am. Chem. Soc. 140, 12354–12358 (2018)

    Article  CAS  Google Scholar 

  54. Q. Fu et al., One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater. 30, 4001–4007 (2018)

    Article  CAS  Google Scholar 

  55. G. Eda et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012)

    Article  CAS  Google Scholar 

  56. Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014)

    Article  CAS  Google Scholar 

  57. L. Ci et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)

    Article  CAS  Google Scholar 

  58. M.P. Levendorf et al., Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012)

    Article  CAS  Google Scholar 

  59. Z. Liu et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8, 119–124 (2013)

    Article  CAS  Google Scholar 

  60. G.H. Han et al., Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7, 10129–10138 (2013)

    Article  CAS  Google Scholar 

  61. S. Cho et al., Phase patterning for ohmic homojunction contact in MoTe2. Science 349(80), 625–628 (2015)

    Article  CAS  Google Scholar 

  62. L. Liu et al., Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018)

    Article  CAS  Google Scholar 

  63. X. Xu et al., Scaling-up atomically thin coplanar semiconductor-metal circuitry via phase engineered chemical assembly. Nano Lett. 19, 6845–6852 (2019)

    Article  CAS  Google Scholar 

  64. J.H. Sung et al., Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 12, 1064–1070 (2017)

    Article  CAS  Google Scholar 

  65. C.H. Naylor et al., Synthesis and physical properties of phase-engineered transition metal dichalcogenide monolayer heterostructures. ACS Nano 11, 8619–8627 (2017)

    Article  CAS  Google Scholar 

  66. M.M. Ugeda et al., Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 9, 3401 (2018)

    Article  CAS  Google Scholar 

  67. A. Allain, J. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015)

    Article  CAS  Google Scholar 

  68. I. Popov, G. Seifert, D. Tománek, Designing electrical contacts to MoS2 monolayers: a computational study. Phys. Rev. Lett. 108, 156802 (2012)

    Article  CAS  Google Scholar 

  69. J. Kang, W. Liu, D. Sarkar, D. Jena, K. Banerjee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4, 31005 (2014)

    CAS  Google Scholar 

  70. Y. Xu et al., Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p–n Heterojunctions. ACS Nano 10, 4895–4919 (2016)

    Article  CAS  Google Scholar 

  71. W. Liu et al., Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013)

    Article  CAS  Google Scholar 

  72. H. Jeong et al., Metal–insulator–semiconductor diode consisting of two-dimensional nanomaterials. Nano Lett. 16, 1858–1862 (2016)

    Article  CAS  Google Scholar 

  73. T. Roy et al., Field-effect transistors built from all two-dimensional material components. ACS Nano 8, 6259–6264 (2014)

    Article  CAS  Google Scholar 

  74. X. Huang et al., Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012)

    Article  CAS  Google Scholar 

  75. H.-J. Chuang et al., High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14, 3594–3601 (2014)

    Article  CAS  Google Scholar 

  76. S. Das et al., All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14, 2861–2866 (2014)

    Article  CAS  Google Scholar 

  77. H. Yu et al., Carrier delocalization in two-dimensional coplanar p–n junctions of graphene and metal dichalcogenides. Nano Lett. 16, 5032–5036 (2016)

    Article  CAS  Google Scholar 

  78. H.-J. Chuang et al., Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016)

    Article  CAS  Google Scholar 

  79. Y. Kim et al., Alloyed 2D metal–semiconductor heterojunctions: origin of interface states reduction and Schottky barrier lowering. Nano Lett. 16, 5928–5933 (2016)

    Article  CAS  Google Scholar 

  80. H. Fang et al., High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012)

    Article  CAS  Google Scholar 

  81. Y. Katagiri et al., Gate-tunable atomically thin lateral MoS2 Schottky junction patterned by electron beam. Nano Lett. 16, 3788–3794 (2016)

    Article  CAS  Google Scholar 

  82. Y. Ma et al., Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 9, 7383–7391 (2015)

    Article  CAS  Google Scholar 

  83. R. Kappera et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014)

    Article  CAS  Google Scholar 

  84. S. Kim et al., Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2. 2D Mater 4, 24004 (2017)

    Article  CAS  Google Scholar 

  85. D. Saha et al., Atomistic modeling of the metallic-to-semiconducting phase boundaries in monolayer MoS2. Appl. Phys. Lett. 108, 253106 (2016)

    Article  CAS  Google Scholar 

  86. D.H. Keum et al., Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015)

    Article  CAS  Google Scholar 

  87. K.-A. Duerloo et al., Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014)

    Article  CAS  Google Scholar 

  88. He, H. et al. Multi-gate memristive synapses realized with the lateral heterostructure of 2D WSe2 and WO3. 380–387 (2020).

  89. M.-Y. Li et al., Self-aligned and scalable growth of monolayer WSe2–MoS2 lateral heterojunctions. Adv. Funct. Mater. 28, 1706860 (2018)

    Article  CAS  Google Scholar 

  90. Ye, K. et al. Lateral bilayer MoS 2 – WS2 heterostructure photodetectors with high responsivity and detectivity. 1900815, 1–7 (2019).

  91. Deng, W. et al. High detectivity from a lateral graphene – MoS2 Schottky photodetector grown by chemical vapor deposition. 1800069, 1–8 (2018).

  92. N. Abraham et al., Astability versus bistability in van der Waals tunnel diode for voltage controlled oscillator and memory applications. ACS Nano 14, 15678–15687 (2020)

    Article  CAS  Google Scholar 

  93. W. Xue et al., Nano-optical imaging of monolayer MoSe2-WSe2 lateral heterostructure with subwavelength domains. J. Vac. Sci. Technol. A 36, 05G502 (2018)

    Article  CAS  Google Scholar 

  94. K. Chen et al., Lateral built-in potential of monolayer MoS2–WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 27, 6431–6437 (2015)

    Article  CAS  Google Scholar 

  95. X.-Q. Zhang et al., Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett. 15, 410–415 (2015)

    Article  CAS  Google Scholar 

  96. J. Shi et al., Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton. Nat. Commun. 8, 35 (2017)

    Article  CAS  Google Scholar 

  97. P.K. Sahoo et al., One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018)

    Article  CAS  Google Scholar 

  98. B. Zheng et al., Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 140, 11193–11197 (2018)

    Article  CAS  Google Scholar 

  99. W. Wu et al., Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 51, 45–53 (2018)

    Article  CAS  Google Scholar 

  100. J. Zhou et al., Morphology engineering in monolayer MoS2-WS2 lateral heterostructures. Adv. Funct. Mater. 28, 1801568 (2018)

    Article  CAS  Google Scholar 

  101. J. Lee et al., Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 13, 13047–13055 (2019)

    Article  CAS  Google Scholar 

  102. T. Chen et al., Lateral and vertical MoSe2–MoS2 heterostructures via epitaxial growth: triggered by high-temperature annealing and precursor concentration. J. Phys. Chem. Lett. 10, 5027–5035 (2019)

    Article  CAS  Google Scholar 

  103. P.K. Sahoo et al., Probing nano-heterogeneity and aging effects in lateral 2D heterostructures using tip-enhanced photoluminescence. Opt. Mater. Express 9, 1620–1631 (2019)

    Article  CAS  Google Scholar 

  104. P.K. Sahoo et al., Bilayer lateral heterostructures of transition-metal dichalcogenides and their optoelectronic response. ACS Nano 13, 12372–12384 (2019)

    Article  CAS  Google Scholar 

  105. D. Liu et al., Synthesis of 2H-1T′ WS2-ReS2 heterophase structures with atomically sharp interface via hydrogen-triggered one-pot growth. Adv. Funct. Mater. 30, 1–11 (2020)

    Google Scholar 

  106. S. Berweger et al., Spatially resolved persistent photoconductivity in MoS2–WS2 lateral heterostructures. ACS Nano 14, 14080–14090 (2020)

    Article  CAS  Google Scholar 

  107. J. Zhu et al., One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 142, 16276–16284 (2020)

    Article  CAS  Google Scholar 

  108. S. Rathi et al., Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices. Nano Lett. 15, 5017–5024 (2015)

    Article  CAS  Google Scholar 

  109. H. Heo et al., Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 27, 3803–3810 (2015)

    Article  CAS  Google Scholar 

  110. H. Li et al., Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano 10, 10516–10523 (2016)

    Article  CAS  Google Scholar 

  111. Y. Kobayashi et al., Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction. Scientific Reports 6, 31223 (2016)

    Article  CAS  Google Scholar 

  112. J. Chen et al., Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide Substrates. Chem. Mater. 28, 7194–7197 (2016)

    Article  CAS  Google Scholar 

  113. K. Bogaert et al., Diffusion-mediated synthesis of MoS2/WS2 lateral heterostructures. Nano Lett. 16, 5129–5134 (2016)

    Article  CAS  Google Scholar 

  114. X. Chen et al., In-plane mosaic potential growth of large-area 2D layered semiconductors MoS2–MoSe2 lateral heterostructures and photodetector application. ACS Appl. Mater. Interfaces 9, 1684–1691 (2017)

    Article  CAS  Google Scholar 

  115. H.-L. Tang et al., Multilayer graphene–WSe2 heterostructures for WSe2 transistors. ACS Nano 11, 12817–12823 (2017)

    Article  CAS  Google Scholar 

  116. M.-L. Tsai et al., Single atomically sharp lateral monolayer p-n heterojunction solar cells with extraordinarily high power conversion efficiency. Adv. Mater. 29, 1701168 (2017)

    Article  CAS  Google Scholar 

  117. K.-C. Chiu et al., Synthesis of in-plane artificial lattices of monolayer multijunctions. Adv. Mater. 30, 1704796 (2018)

    Article  CAS  Google Scholar 

  118. D. Liu et al., Diverse atomically sharp interfaces and linear dichroism of 1T’ ReS2-ReSe2 lateral p–n heterojunctions. Adv. Funct. Mater. 28, 1804696 (2018)

    Article  CAS  Google Scholar 

  119. C. Zhu et al., Strain-driven growth of ultra-long two-dimensional nano-channels. Nat. Commun. 11, 772 (2020)

    Article  CAS  Google Scholar 

  120. H. Taghinejad et al., Synthetic engineering of morphology and electronic band gap in lateral heterostructures of monolayer transition metal dichalcogenides. ACS Nano 14, 6323–6330 (2020)

    Article  CAS  Google Scholar 

  121. A. Sharma et al., Large area, patterned growth of 2D MoS2 and lateral MoS2\WS2 heterostructures for nano- and opto-electronic applications. Nanotechnology 31, 255603 (2020)

    Article  CAS  Google Scholar 

  122. Y. Kobayashi et al., Continuous heteroepitaxy of two-dimensional heterostructures based on layered chalcogenides. ACS Nano 13, 7527–7535 (2019)

    Article  CAS  Google Scholar 

  123. Z.-Q. Fan et al., In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys. Rev. B 96, 165402 (2017)

    Article  Google Scholar 

  124. K. Chen et al., Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 9, 9868–9876 (2015)

    Article  CAS  Google Scholar 

  125. A.A. Murthy et al., Intrinsic transport in 2D heterostructures mediated through h-BN tunneling contacts. Nano Lett. 18(5), 2990–2998 (2018)

    Article  CAS  Google Scholar 

  126. J. Xia et al., Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nature Physics 17, 92–98 (2021)

    Article  CAS  Google Scholar 

  127. X. Zhang et al., Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces 11, 12777–12785 (2019)

    Article  CAS  Google Scholar 

  128. L. Nurdiwijayanto et al., Insight into the structural and electronic nature of chemically exfoliated molybdenum disulfide nanosheets in aqueous dispersions. Dalt. Trans. 47, 3014–3021 (2018)

    Article  CAS  Google Scholar 

  129. L. Nurdiwijayanto et al., Stability and nature of chemically exfoliated MoS2 in aqueous suspensions. Inorg. Chem. 56, 7620–7623 (2017)

    Article  CAS  Google Scholar 

  130. R. Canton-Vitoria, T. Hotta, Z. Liu, T. Inoue, R. Kitaura, Stabilization of metallic phases through formation of metallic/semiconducting lateral heterostructures. J. Chem. Phys. 153 (2020)

  131. C.H. Sharma, A.P. Surendran, A. Varghese, M. Thalakulam, Stable and scalable 1T MoS2 with low temperature-coefficient of resistance. Sci. Rep. 8, 12463 (2018)

    Article  CAS  Google Scholar 

  132. Q. Huang et al., The mechanistic insights into the 2H-1T phase transition of MoS2 upon alkali metal intercalation: from the study of dynamic sodiation processes of MoS2 nanosheets. Adv. Mater. Interfaces 4, 1700171 (2017)

    Article  CAS  Google Scholar 

  133. H. Huang et al., High-performance two-dimensional Schottky diodes utilizing chemical vapour deposition-grown graphene–MoS2 heterojunctions. ACS Appl. Mater. Interfaces 10, 37258–37266 (2018)

    Article  CAS  Google Scholar 

  134. Y.S. Ang et al., Universal scaling laws in Schottky heterostructures based on two-dimensional materials. Phys. Rev. Lett. 121, 56802 (2018)

    Article  Google Scholar 

  135. L. Wang et al., Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693–6697 (2014)

    Article  CAS  Google Scholar 

  136. A.N. Enyashin et al., New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115, 24586–24591 (2011)

    Article  CAS  Google Scholar 

  137. P. Joensen et al., Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986)

    Article  CAS  Google Scholar 

  138. H.S.S. Ramakrishna Matte et al., MoS2 and WS2 analogues of graphene. Angew. Chemie Int. Ed. 49, 4059–4062 (2010)

    Article  CAS  Google Scholar 

  139. H. Li et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016)

    Article  CAS  Google Scholar 

  140. Y. Qi et al., CO2-induced phase engineering: protocol for enhanced photoelectrocatalytic performance of 2D MoS2 nanosheets. ACS Nano 10, 2903–2909 (2016)

    Article  CAS  Google Scholar 

  141. W. Cui et al., Triphasic 2D materials by vertically stacking laterally heterostructured 2H-/1T′-MoS2 on graphene for enhanced photoresponse. Adv. Electron. Mater. 3, 1–8 (2017)

    Article  CAS  Google Scholar 

  142. W. Zhang et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4, 3826 (2014)

    Article  CAS  Google Scholar 

  143. A. Apte et al., Two-dimensional lateral epitaxy of 2H (MoSe2)–1T′ (ReSe2) phases. Nano Lett. 19, 6338–6345 (2019)

    Article  CAS  Google Scholar 

  144. G. Shao et al., Template-assisted synthesis of metallic 1T′-Sn0.3W0.7S2 nanosheets for hydrogen evolution reaction. Adv. Funct. Mater. 30, 1906069 (2020)

    Article  CAS  Google Scholar 

  145. F. Raffone et al., MoS2 enhanced T-phase stabilization and tunability through alloying. J. Phys. Chem. Lett. 7, 2304–2309 (2016)

    Article  CAS  Google Scholar 

  146. G. Shao et al., Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. 2002172, 2002172 (2020)

    Article  CAS  Google Scholar 

  147. S. Wang et al., Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 8, 1–7 (2018)

    Article  Google Scholar 

  148. H.L. Zhuang et al., Doping-controlled phase transitions in single-layer MoS2. Phys. Rev. B 96, 1–8 (2017)

    Article  Google Scholar 

  149. D.Y. Qiu et al., Screening and many-body effects in two-dimensional crystals: monolayer MoS2. Phys. Rev. B 93, 235435 (2016)

    Article  CAS  Google Scholar 

  150. X. Zou et al., Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2013)

    Article  CAS  Google Scholar 

  151. K.F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  CAS  Google Scholar 

  152. T. Zhang et al., Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 14, 4326–4335 (2020)

    Article  CAS  Google Scholar 

  153. C. Jin et al., Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018)

    Article  CAS  Google Scholar 

  154. M.Z. Bellus et al., Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers. Nanoscale Horiz. 2, 31–36 (2017)

    Article  CAS  Google Scholar 

  155. A.A. Tedstone, D.J. Lewis, P. O’Brien, Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 28, 1965–1974 (2016)

    Article  CAS  Google Scholar 

  156. L. Ye et al., Tuning the electrical transport properties of multilayered molybdenum disulfide nanosheets by intercalating phosphorus. J. Phys. Chem. C 119, 9560–9567 (2015)

    Article  CAS  Google Scholar 

  157. X. Geng et al., Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv. Funct. Mater. 27, 1702998 (2017)

    Article  CAS  Google Scholar 

  158. M. Acerce et al., Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015)

    Article  CAS  Google Scholar 

  159. B. Chamlagain et al., Scalable lateral heterojunction by chemical doping of 2D TMD thin films. Sci. Rep. 10, 1–9 (2020)

    Article  CAS  Google Scholar 

  160. Z. Cao et al., Impact of interfacial defects on the properties of monolayer transition metal dichalcogenide lateral heterojunctions. J. Phys. Chem. Lett. 8, 1664–1669 (2017)

    Article  CAS  Google Scholar 

  161. Y. Yang et al., Disparity in photoexcitation dynamics between vertical and lateral MoS2/WSe2 heterojunctions: time-domain simulation emphasizes the importance of donor–acceptor interaction and band alignment. J. Phys. Chem. Lett. 8, 5771–5778 (2017)

    Article  CAS  Google Scholar 

  162. K.W. Lau et al., Interface excitons at lateral heterojunctions in monolayer semiconductors. Phys. Rev. B. 98, 115427 (2018)

    Article  CAS  Google Scholar 

  163. H.M. Hill et al., Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992–2997 (2015)

    Article  CAS  Google Scholar 

  164. S. Park et al., Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates. 2D Mater 5, 025003 (2018)

    Article  CAS  Google Scholar 

  165. W.-T. Hsu et al., Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater 6, 025028 (2019)

    Article  CAS  Google Scholar 

  166. H.C. Kamban et al., Interlayer excitons in van der Waals heterostructures: binding energy, Stark shift and field-induced dissociation. Scientific Report 10, 5537 (2020)

    Article  CAS  Google Scholar 

  167. Z. Li et al., Synthesis of ultrathin composition graded doped lateral WSe2/WS2 heterostructures. ACS Appl. Mater. Interfaces 9, 34204–34212 (2017)

    Article  CAS  Google Scholar 

  168. G. Foiri et al., Lateral graphene À hBCN heterostructures as a platform for fully two-dimensional transistors. 2642–2648 (2012).

  169. W. Hong et al., Improved electrical contact properties of MoS2-graphene lateral heterostructure. Adv. Funct. Mater. 29, 1807550 (2019)

    Article  CAS  Google Scholar 

  170. A. Behranginia et al., Direct growth of high mobility and low-noise lateral MoS2–graphene heterostructure electronics. Small 13, 1604301 (2017)

    Article  CAS  Google Scholar 

  171. M. Zhao et al., Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11, 954–959 (2016)

    Article  CAS  Google Scholar 

  172. X. Zhang et al., Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019)

    Article  CAS  Google Scholar 

  173. A. Gamucci et al., Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures. Nat. Commun. 5, 5824 (2014)

    Article  CAS  Google Scholar 

  174. C. Tan et al., A self-powered photovoltaic photodetector based on a lateral WSe2-WSe2 homojunction. ACS Appl. Mater. Interfaces 12, 44934–44942 (2020)

    Article  CAS  Google Scholar 

  175. S. Das et al., Spin filtering and rectification in lateral heterostructures of Zigzag-Edge BC3 and graphene nanoribbons: implications for switching and memory devices. ACS Appl. Nano Mater. 2, 5365–5372 (2019)

    Article  CAS  Google Scholar 

  176. A. Pal et al., A compact current–voltage model for 2-D-semiconductor-based lateral homo-/hetero-junction tunnel-FETs. IEEE Trans. Electron Devices 67, 4473–4481 (2020)

    Article  CAS  Google Scholar 

  177. W. Zhang et al., Impact of geometry on transport properties of armchair graphene nanoribbon heterojunction. Carbon N. Y. 124, 422–428 (2017)

    Article  CAS  Google Scholar 

  178. X.F. Li et al., Design of graphene–nanoribbon heterojunctions from first principles. J. Phys. Chem. C 115, 12616–12624 (2011)

    Article  CAS  Google Scholar 

  179. X.Q. Deng et al., The design of spin filter junction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Org. Electron. 14, 3240–3248 (2013)

    Article  CAS  Google Scholar 

  180. L. Peng et al., Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure. J. Appl. Phys. 115(22), 223705 (2014)

    Article  CAS  Google Scholar 

  181. T. Roy et al., Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015)

    Article  CAS  Google Scholar 

  182. M. Nazirfakhr et al., Negative differential resistance and rectification effects in zigzag graphene nanoribbon heterojunctions: induced by edge oxidation and symmetry concept. Phys. Lett. A 382, 704–709 (2018)

    Article  CAS  Google Scholar 

  183. S. Fan et al., Implementing lateral MoSe2 p-n homojunction by efficient carrier type modulation. ACS Appl. Mater. Interfaces 10(31), 26533–26538 (2018)

    Article  CAS  Google Scholar 

  184. X. Yan et al., Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13, 1701478 (2017)

    Article  CAS  Google Scholar 

  185. A.N. Hoffman et al., Tuning the electrical properties of WSe2 via O2 plasma oxidation: towards lateral homojunctions. 2D Mater 6, 045024 (2019)

    Article  CAS  Google Scholar 

  186. W. Jin et al., Optoelectronic properties of lateral MoS2 p-n homojunction implemented by selective p-type doping using nitrogen plasma. J. Phys. D: Appl. Phys. 53, 405102 (2020)

    Article  CAS  Google Scholar 

  187. R.S. Sundaram et al., Electroluminescence in single layer MoS2. Nano Lett. 13, 1416–1421 (2013)

    Article  CAS  Google Scholar 

  188. J.S. Ross et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014)

    Article  CAS  Google Scholar 

  189. B.W.H. Baugher et al., Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014)

    Article  CAS  Google Scholar 

  190. Y. Zhang et al., Potential profile of stabilized field-induced lateral p-n junction in transition-metal dichalcogenides. ACS Nano 11, 12583–12590 (2017)

    Article  CAS  Google Scholar 

  191. Y.J. Zhang et al., Electrically switchable chiral light-emitting transistor. Science 344(80), 725–728 (2014)

    Article  CAS  Google Scholar 

  192. G. Wang et al., Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B - Condens. Matter Mater. Phys. 90, 1–6 (2014)

    Google Scholar 

  193. S. Tongay et al., Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons. Sci. Rep. 3, 2657 (2013)

    Article  Google Scholar 

  194. F. Withers et al., WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 15, 8223–8228 (2015)

    Article  CAS  Google Scholar 

  195. Y. Zhu et al., High-efficiency monolayer molybdenum ditelluride light-emitting diode and photodetector. ACS Appl. Mater. Interfaces 10, 43291–43298 (2018)

    Article  CAS  Google Scholar 

  196. B. Liu et al., High performance photodetector based on graphene / MoS2 / graphene lateral heterostructure with Schottky junctions. J. Alloys Compd. 779, 140–146 (2019)

    Article  CAS  Google Scholar 

  197. T. Chen et al., High photoresponsivity in ultrathin 2D lateral graphene:WS2:graphene photodetectors using direct CVD growth. ACS Appl. Mater. Interfaces 11, 6421–6430 (2019)

    Article  CAS  Google Scholar 

  198. T.-H. Tsai et al., Photogating WS2 photodetectors using embedded WSe2 charge puddles. ACS Nano 14, 4559–4566 (2020)

    Article  CAS  Google Scholar 

  199. H. Tan et al., Lateral graphene-contacted vertically stacked WS2/MoS2 hybrid photodetectors with large gain. Adv. Mater., 1702917 (2017)

  200. H. Tan et al., Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 10(8), 7866–7787 (2016)

    Article  CAS  Google Scholar 

  201. L. Wang et al., Pronounced photovoltaic effect in electrically tunable lateral black-phosphorus heterojunction diode. Adv. Electron. Mater. 4, 1700442 (2018)

    Article  CAS  Google Scholar 

  202. Y. Liu et al., Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 27, 1604638 (2017)

    Article  CAS  Google Scholar 

  203. M. Buscema et al., Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014)

    Article  CAS  Google Scholar 

  204. D.J. Groenendijk et al., Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 14, 5846–5852 (2014)

    Article  CAS  Google Scholar 

  205. S. Memaran et al., Pronounced photovoltaic response from multilayered transition-metal dichalcogenides PN-junctions. Nano Lett. 15, 7532–7538 (2015)

    Article  CAS  Google Scholar 

  206. G. Wu et al., MoTe2 p–n homojunctions defined by ferroelectric polarization. Adv. Mater. 32, 1907937 (2020)

    Article  CAS  Google Scholar 

  207. S. Jia et al., Lateral monolayer MoSe2–WSe2 p–n heterojunctions with giant built-in potentials. Small 16, 2002263 (2020)

    Article  CAS  Google Scholar 

  208. W. Feng et al., Solid-state reaction synthesis of a InSe/CuInSe2 lateral p–n heterojunction and application in high performance optoelectronic devices. Chem. Mater. 27, 983–989 (2015)

    Article  CAS  Google Scholar 

  209. M.M. Furchi et al., Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014)

    Article  CAS  Google Scholar 

  210. F. Wang et al., Tunable GaTe-MoS2 van der Waals p−n Junctions with novel optoelectronic performance. Nano Lett. 15, 7558–7566 (2015)

    Article  CAS  Google Scholar 

  211. K. Cho et al., Electric and photovoltaic characteristics of a multi-layer ReS2/ReSe2 heterostructure. APL Mater 5, 076101 (2017)

    Article  CAS  Google Scholar 

  212. A.-J. Cho et al., Two-dimensional WSe2/MoS2 p−n heterojunction-based transparent photovoltaic cell and its performance enhancement by fluoropolymer passivation. ACS Appl. Mater. Interfaces 10, 35972–35977 (2018)

    Article  CAS  Google Scholar 

  213. E. Wu, et a/. Photoinduced doping to enable tunable and high-performance anti-ambipolar MoTe2/MoS2 heterotransistors. ACS Nano 13, 5430–5438 (2019)

    Article  CAS  Google Scholar 

  214. A. Varghese et al., Near-direct bandgap WSe2/ReS2 type-II p-n heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 20, 1707–1717 (2020)

    Article  CAS  Google Scholar 

  215. M. Amani et al., Near-unity photoluminescence quantum yield in MoS2. Science. 350, 1065–1068 (2015)

    Article  CAS  Google Scholar 

  216. B. Zheng et al., Dual-channel type tunable field-effect transistors based on vertical bilayer WS2(1 − x)Se2x/SnS2 heterostructures. InfoMat. 2, 752–760 (2020)

    Article  CAS  Google Scholar 

  217. L. Liu et al., Wafer-scale vertical van der Waals heterostructures. InfoMat. 3, 3–21 (2021)

    Article  CAS  Google Scholar 

  218. H. Xu, L. Yin, C. Liu, X. Sheng, N. Zhao, Recent advances in biointegrated optoelectronic devices. Adv. Mater. 1800156, 30 (2018)

    Google Scholar 

  219. Z. Wang et al., NaCl-assisted one-step growth of MoS2–WS2 in-plane heterostructures. Nanotechnology 28, 325602 (2017)

    Article  CAS  Google Scholar 

  220. Y. Yoo et al., Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 137, 14281–14287 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasana Kumar Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, B., Mohanty, P., Kumar, P. et al. Synthesis of lateral heterostructure of 2D materials for optoelectronic devices: challenges and opportunities. emergent mater. 4, 923–949 (2021). https://doi.org/10.1007/s42247-021-00219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00219-0

Navigation