Skip to main content
Log in

Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Understanding bubbles evolution kinetics on electrodes with varied geometries is of fundamental importance for advanced electrodes design in gas evolution reaction. In this work, the evolution kinetics of electro-generated hydrogen bubbles are recorded in situ on three (i.e. smooth, nanoporous, and nanoarray) Pt electrodes to identify the geometry dependence. The bubble radius shows a time-dependent growth kinetic, which is tightly-connected to the electrode geometry. Among the three electrodes, the smooth one shows a typical time coefficient of 0.5, in consistence with reported values; the nanoporous one shows a time coefficient of 0.47, less than the classic one (0.5); while the nanoarray one exhibits fastest bubble growth kinetics with a time coefficient higher than 0.5 (0.54). Moreover, the nanoarray electrode has the smallest bubble detachment size and the largest growth coefficient (23.3) of all three electrodes. Based on the experimental results, a growth model combined direct bottom- injection with micro-convection is proposed to illustrate the surface geometry dependent coefficients, i.e., the relationship between geometry and bubble evolution kinetics. The direct injection of generated gas molecules from the bottom of bubbles at the three phase boundaries are believed the key to tailor the bubble wetting states and thus determine the bubble evolution kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  CAS  Google Scholar 

  2. Li, L. J.; Liu, S. Y.; Manthiram, A. Co3O4 nanocrystals coupled with O- and N-doped carbon nanoweb as a synergistic catalyst for hybrid Li-air batteries. Nano Energy 2015, 12, 852–860.

    Article  CAS  Google Scholar 

  3. Cheng, Y.; Xu, C. W.; Jia, L. C.; Gale, J. D.; Zhang, L. L.; Liu, C.; Shen, P. K.; Jiang, S. P. Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Appl. Catal. B-Environ. 2015, 163, 96–104.

    Article  CAS  Google Scholar 

  4. Rees, N. V.; Compton, R. G. Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuelcells. Energy Environ. Sci. 2011, 4, 1255–1260.

    Article  CAS  Google Scholar 

  5. Meng, Y. Y.; Zou, X. X.; Huang, X. X.; Goswami, A.; Liu, Z. W.; Asefa, T. Polypyrrole-derived nitrogen and oxygen Co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Adv. Mater. 2014, 26, 6510–6516.

    Article  CAS  Google Scholar 

  6. Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.

    Article  CAS  Google Scholar 

  7. Hernández, S.; Barbero, G.; Saracco, G.; Alexe-Ionescu, A. L. Considerations on oxygen bubble formation and evolution on BiVO4 porous anodes used in water splitting photoelectrochemical cells. J. Phys. Chem. C 2015, 119, 9916–9925.

    Article  Google Scholar 

  8. Hetsroni, G.; Zakin, J. L.; Lin, Z.; Mosyak, A.; Pancallo, E. A.; Rozenblit, R. The effect of surfactants on bubble growth, wall thermal patterns and heat transfer in pool boiling. Int. J. Heat Mass Transf. 2001, 44, 485–497.

    Article  CAS  Google Scholar 

  9. Ahn, S. H.; Choi, I.; Park, H. Y.; Hwang, S. J.; Yoo, S. J.; Cho, E. A.; Kim, H. J.; Henkensmeier, D.; Nam, S. W.; Kim, S. K.; et al. Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chem. Commun. 2013, 49, 9323–9325.

    Article  CAS  Google Scholar 

  10. Scriven, L. E. On the dynamics of phase growth. Chem. Eng. Sci. 1959, 10, 1–13.

    Article  CAS  Google Scholar 

  11. Kiuchi, D.; Matsushima, H.; Fukunaka, Y.; Kuribayashi, K. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J. Electrochem. Soc. 2006, 153, E138–E143.

    Article  CAS  Google Scholar 

  12. Hanwright, J.; Zhou, J.; Evans, G. M.; Galvin, K. P. Influence of surfactant on gas bubble stability. Langmuir 2005, 21, 4912–4920.

    Article  CAS  Google Scholar 

  13. Jones, S. F.; Evans, G. M.; Galvin, K. P. Bubble nucleation from gas cavities -a review. Adv. Colloid Interface Sci. 1999, 80, 27–50.

    Article  CAS  Google Scholar 

  14. Huang, C.; Guo, Z. G. The wettability of gas bubbles: From macro behavior to nano structures to applications. Nanoscale 2018, 10, 19659–19672.

    Article  CAS  Google Scholar 

  15. Brandon N. P.; Kelsall, G. H. Growth kinetics of bubbles electrogenerated at microelectrodes. J. Appl. Electrochem. 1985, 15, 475–484.

    Article  CAS  Google Scholar 

  16. Burman, J. E. Bubble growth in supersaturated solution. Ph.D. Dissertation, University of London, London, 1974.

    Google Scholar 

  17. Strenge, P. H.; Orell, A.; Westwater, J. W. Microscopic study of bubble growth during nucleate boiling. AIChE J. 1961, 7, 578–583.

    Article  CAS  Google Scholar 

  18. Yang, F. C.; Manjare, M.; Zhao, Y. P.; Qiao, R. On the peculiar bubble formation, growth, and collapse behaviors in catalytic micro-motor systems. Microfluid. Nanofluid. 2017, 21, 6.

    Article  Google Scholar 

  19. Yang, X. G.; Karnbach, F.; Uhlemann, M.; Odenbach, S.; Eckert, K. Dynamics of single hydrogen bubbles at a platinum microelectrode. Langmuir 2015, 31, 8184–8193.

    Article  CAS  Google Scholar 

  20. Donose, B. C.; Harnisch, F.; Taran, E. Electrochemically produced hydrogen bubble probes for gas evolution kinetics and force spectroscopy. Electrochem. Commun. 2012, 24, 21–24.

    Article  CAS  Google Scholar 

  21. Wang, M. Y.; Wang, Z.; Guo, Z. C. Water electrolysis enhanced by super gravity field for hydrogen production. Int. J. Hydrog. Energy 2010, 35, 3198–3205.

    Article  CAS  Google Scholar 

  22. Koza, J. A.; Mühlenhoff, S.; Żabiński, P.; Nikrityuk, P. A.; Eckert, K.; Uhlemann, M.; Gebert, A.; Weier, T.; Schultz, L.; Odenbach, S. Hydrogen evolution under the influence of a magnetic field. Electrochim. Acta 2011, 56, 2665–2675.

    Article  CAS  Google Scholar 

  23. Rivas, D. F.; Prosperetti, A.; Zijlstra, A. G.; Lohse, D.; Gardeniers, H. J. G. E. Efficient sonochemistry through microbubbles generated with micromachined surfaces. Angew. Chem., Int. Ed. 2010, 49, 9699–9701.

    Article  Google Scholar 

  24. Xu, W. W.; Lu, Z. Y.; Wan, P. B.; Kuang, Y.; Sun, X. M. Highperformance water electrolysis system with double nanostructured superaerophobic electrodes. Small 2016, 12, 2492–2498.

    Article  CAS  Google Scholar 

  25. Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

    Article  CAS  Google Scholar 

  26. Zhang, J.; Sheng, X.; Jin, J.; Feng, X. J.; Jiang, L. High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface. Nano Res. 2017, 10, 2998–3004.

    Article  CAS  Google Scholar 

  27. Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Accounts Chem. Res. 2018, 51, 1590–1598.

    Article  CAS  Google Scholar 

  28. Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737–1744.

    Article  CAS  Google Scholar 

  29. Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Zheng, Y. R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. R.; Wang, G. X. et al. “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 2019, 141, 7537–7543.

    Article  CAS  Google Scholar 

  30. Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

    Article  CAS  Google Scholar 

  31. Yan, Y. Y.; Gao, N.; Barthlott, W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 2011, 169, 80–105.

    Article  CAS  Google Scholar 

  32. Chandra Sekhar, S.; Nagaraju, G.; Ramulu, B.; Hussain, S. K.; Narsimulu, D.; Yu, J. S. Multifunctional core-shell-like nanoarchitectures for hybrid supercapacitors with high capacity and long-term cycling durability. Nano Res. 2019, 12, 2597–2608.

    Article  CAS  Google Scholar 

  33. Wang, Y. C.; Hu, X. W.; Cao, Z. S.; Guo, L. J. Investigations on bubble growth mechanism during photoelectrochemical and electrochemical conversions. Colloid Surf. A:Physicochem. Eng. Asp. 2016, 505, 86–92.

    Article  CAS  Google Scholar 

  34. Sakuma, G.; Fukunaka, Y.; Matsushima, H. Nucleation and growth of electrolytic gas bubbles under microgravity. Int. J. Hydrog. Energy 2014, 39, 7638–7645.

    Article  CAS  Google Scholar 

  35. Li, Z. G.; Kong, Q.; Ma, X. Y.; Zang, D. Y.; Guan, X. H.; Ren, X. H. Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: Bouncing or sticking. Nanoscale 2017, 9, 8249–8255.

    Article  CAS  Google Scholar 

  36. Zhang, X. J.; Liu, Y.; Liu, Y. H.; Ahmed, S. I. U. Controllable and switchable capillary adhesion mechanism for bio-adhesive pads: Effect of micro patterns. Chin. Sci. Bull. 2009, 54, 1648–1654.

    Google Scholar 

  37. Brussieux, C.; Viers, P.; Roustan, H.; Rakib, M. Controlled electrochemical gas bubble release from electrodes entirely and partially covered with hydrophobic materials. Electrochim. Acta 2011, 56, 7194–7201.

    Article  CAS  Google Scholar 

  38. Hu, X. W.; Cao, Z. S.; Wang, Y. H.; Shen, S. H.; Guo, L. J.; Chen, J. W. Single photogenerated bubble at gas-evolving TiO2 nanorodarray electrode. Electrochim. Acta. 2016, 202, 175–185.

    Article  CAS  Google Scholar 

  39. Haider, S. I.; Webb, R. L. A transient micro-convection model of nucleate pool boiling. Int. J. Heat Mass Transf. 1997, 40, 3675–3688.

    Article  CAS  Google Scholar 

  40. Lee, R. C.; Nydahl, J. E. Numerical calculation of bubble growth in nucleate boiling from inception through departure. J. Heat Transf. 1989, 111, 474–479.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Weng-Feng Lin from Loughborough University and Hongjie Dai from Stanford University for the valuable discussion. This work was supported by the National Natural Science Foundation of China (NSFC), the National Key Research and Development Project (Nos. 2018YFB1502401 and 2018YFA0702002), the Royal Society and the Newton Fund through the Newton Advanced Fellowship award (NAF R1191294), the Program for Changjiang Scholars and Innovation Research Team in the University (No. IRT1205), the Fundamental Research Funds for the Central Universities, and the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Luo, Haijun Xu or Xiaoming Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Xie, T., Zhou, D. et al. Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries. Nano Res. 14, 2154–2159 (2021). https://doi.org/10.1007/s12274-020-3132-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3132-y

Keywords

Navigation