Skip to main content
Log in

Bubble Consumption Dynamics in Electrochemical Oxygen Reduction

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Electrochemical oxygen reduction reaction(ORR) is crucial for fuel cells and metal-air batteries, while the oxygen consumption dynamics study during ORR, which affects the ORR efficiency, is not as concerned as catalysts design does. Herein the consumption behavior of an individual oxygen bubble on Pt foils with different wettabilities during ORR was tracked by a real-time approach to reveal whether the surface wettability of electrode can influence the consumption dynamics and determine the reaction reactive zones of oxygen bubble consumption. The oxygen bubble underwent a “constant contact angle” dominant consumption model on aerophobic Pt foil, while an initial “constant radius” and the subsequent “constant contact angle” oxygen consumption models were observed on aero-philic Pt foil. Results here demonstrated that the current was proportional to the bottom contact area, rather than the three-phase contact line of the bubbles according to the fitting curves between individual bubble current and the con-sumption behavior parameters. This study highlights the important role of the gas-solid interface in influencing the efficiency of gas consumption electrochemical reactions, which shall benefit the understanding of reaction kinetics and the rational design of electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lefevre M., Proietti E., Jaouen F., Dodelet J., Science, 2009, 324, 71

    Article  CAS  Google Scholar 

  2. Ng J., Tang M., Jaramillo T., Energy Environ. Sci., 2014, 7, 2017

    Article  CAS  Google Scholar 

  3. Suntivich J., Gasteiger H., Yabuuchi N., Goodenough J., Horn Y., Nat. Chem., 2011, 3, 546

    Article  CAS  Google Scholar 

  4. Wang Y., Zhao N. N., Fang B. Z., Li H., Bi X., Wang H. J., Chem. Rev., 2015, 115, 3433

    Article  CAS  Google Scholar 

  5. Zhang J. T., Zhao Z. H., Xia Z. H., Dai L. M., Nat. Nanotech., 2015, 10, 444

    Article  CAS  Google Scholar 

  6. Zhang G. X., Jia Y., Zhang C., Xiong X. Y., Sun K., Chen R. D., Chen W. X., Kuang Y., Zheng L. R., Tang H. L., Liu W., Liu J. F., Sun X. M., Lin W., Dai H. J., Energy Environ. Sci., 2019, 12, 1317

    Article  CAS  Google Scholar 

  7. Trogadas P., Ramani V., Strasser P., Fuller T. F., Coppens M. O., An-gew. Chem. Int. Ed., 2016, 55, 122

    Article  CAS  Google Scholar 

  8. Zhu C. J., Li H., Fu S. F., Du D., Lin Y. H., Chem. Soc. Rev., 2016, 45, 517

    Article  CAS  Google Scholar 

  9. Mi L., Yu J. C., He F., Jiang L., Wu Y. F., Yang L. J., Han X. F., Li Y., Liu A. R., Wei W., Zhang Y. J., Tian Y., Liu S. Q., Jiang L., J. Am. Chem. Soc., 2017, 139, 10441

    Article  CAS  Google Scholar 

  10. Chen L. P., Sheng X., Wang D. D., Liu J., Sun R. Z., Jiang L., Feng X. J., Adv. Funct. Mater., 2018, 28, 1801483

    Article  Google Scholar 

  11. Wang P. J., Hayashi T., Meng Q., Wang Q. B., Liu H., Hashimoto K., Jiang L., Small, 2017, 13, 1601250

    Article  Google Scholar 

  12. Sheng X., Liu Z., Zeng R. S., Chen L. P., Feng X. J., Jiang L., J. Am. Chem. Soc., 2017, 139, 12402

    Article  CAS  Google Scholar 

  13. Wakerley D., Lamaison S., Ozanam F., Mengu N., Mercier D., Mar- cus P., Fontecave M., Mougel V., Nat. Mater., 2019, 18, 1222

    Article  CAS  Google Scholar 

  14. Lu Z. Y., Xu W. W., Ma J., Li Y. J., Sun X. M., Jiang L., Adv. Mater., 2016, 28, 7155

    Article  CAS  Google Scholar 

  15. Li Y. J., Zhang H. C., Han N. N., Kuang Y., Liu J. F., Liu W., Duan H. H., Sun X. M., Nano Res., 2018, 12, 177

    Article  Google Scholar 

  16. Wang S. T., Liu K. S., Yao X., Jiang L., Chem. Rev., 2015, 115, 8230

    Article  CAS  Google Scholar 

  17. German S. R., Edwards M. A., Ren H., White H. S., J. Am. Chem. Soc., 2018, 140, 4047

    Article  CAS  Google Scholar 

  18. Wang Y. L., Zaytsev M. E., The H. L., Eijkel J. C. T., Zandvliet H. J. W., Zhang X. H., Lohse D., ACS Nano, 2017, 11, 2045

    Article  CAS  Google Scholar 

  19. Zhao X., Ren H., Luo L., Langmuir, 2019, 35, 5392

    Article  CAS  Google Scholar 

  20. Yang X., Karnbach F., Uhlemann M., Odenbach S., Eckert K., Langmuir, 2015, 31, 8184

    Article  CAS  Google Scholar 

  21. Kaveh N. S., Rudolph E. S. J., van Hemert P., Rossen W. R., Wolf K. H., Energy Fuels,2014, 28, 4002

    Article  CAS  Google Scholar 

  22. Fei Y., Pang M. J., Chem. Eng. Sci., 2019, 200, 87

    Article  CAS  Google Scholar 

  23. Yang X., Baczyzmalski D., Cierpka C., Mutschke G., Eckert K., Phys. Chem. Chem. Phys., 2018, 20, 11542

    Article  CAS  Google Scholar 

  24. Wang Y. C., Hu X. W., Cao Z. S., Guo L. J., Colloids Surf. A Physi-cochem. Eng. Aspects, 2016, 505, 86

    Article  CAS  Google Scholar 

  25. van der Linde P., Peñas-López P., Moreno Soto Á., van der Meer D., Lohse D., Gardeniers H., Rivas D. F., Energy Environ. Sci., 2018, 11, 3452

    Article  Google Scholar 

  26. Manor O., Vakarelski I. U., Tang X., O’ Shea S. J., Stevens G. W., Grieser F., Phys. Rev. Lett., 2008, 101, 024501

    Article  Google Scholar 

  27. Jamnongwong M., Loubiere K., Dietrich N., Hé brard G., Chem. Eng. J., 2010, 165, 758

    Article  CAS  Google Scholar 

  28. Sedahmed G. H., Nirdosh I., Chem. Eng. Technol., 2007, 30, 1406

    Article  CAS  Google Scholar 

  29. Zana A., Wiberg G. K. H., Deng Y. J., Stergaard T., Rossmeisl J., Arenz M., ACS Appl. Mater. Interfaces, 2017, 7b13902

    Google Scholar 

  30. Truesdale G. A., Downing A. L., Lowden G. F., J. Appl. Chem., 2007, 5, 53

    Article  Google Scholar 

  31. Dietrich E., Kooij E. S., Zhang X., Zandvliet H. J. W., Lohse D., Langmuir, 2015, 31, 4696

    Article  CAS  Google Scholar 

  32. Feng L., Zhang Z. Y., Mai Z. H., Ma Y. M., Liu B. Q., Jiang L., Zhu D. B., Angew. Chem. Int. Ed., 2004, 116, 2046

    Article  Google Scholar 

  33. Schönfeld F., Graf K. H., Hardt S., Butt H. J., Int. J. Heat Mass Transf., 2008, 51, 3696

    Article  Google Scholar 

  34. Qiao S. S., Li S., Li Q. Y., Li B., Liu K. S., Feng X. Q., Langmuir,2017, 33, 13480

    Article  CAS  Google Scholar 

  35. Gao N., Geyer F., Pilat D. W., Wooh S., Vollmer D., Butt H. J., Berger R., Nat. Phys., 2017, 14, 191

    Article  Google Scholar 

  36. Bao L., Werbiuk Z., Lohse D., Zhang X. H., J. Phys. Chem. Lett., 2016, 7, 1055

    Article  CAS  Google Scholar 

  37. Fernandez D., Maurer P., Martine M., Coey J., Mobius M., Langmuir, 2014, 30, 13065

    Article  CAS  Google Scholar 

  38. Chen J., Wang J. Q., Han E., Ke W., Electrochem. Commun., 2008, 10, 577

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. LIN Wen-Feng from Loughborough University and Prof. ZHUANG Lin from WuHan University for their help and advice in experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Luo, Haijun Xu or Xiaoming Sun.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21675007, 21676015, 21520102002, 91622116), the National Key Research and Development Project(Nos.2018YFB1502401, 2018YFA0702002), the Royal Society and the Newton Fund Through the Newton Advanced Fellowship Award(No.NAF/R1/191294), the Program for Changjiang Scholars and Innovation Research Team in the University, China(No.IRT1205), the Fundamental Research Funds for the Central Universities of CHina, and the Long-term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhou, D., Lu, Z. et al. Bubble Consumption Dynamics in Electrochemical Oxygen Reduction. Chem. Res. Chin. Univ. 36, 473–478 (2020). https://doi.org/10.1007/s40242-020-0061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0061-y

Keywords

Navigation