Skip to main content
Log in

Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional molybdenum disulfide (2D MoS2) is considered as a promising candidate for many applications due to its unique structure and properties. However, the controllable synthesis of large-scale and high-quality 2D 1T-phase MoS2 is still a challenge. Herein, we present the scalable and controllable synthesis of 2D MoS2 from 2H to 1T@2H phase by using K2SO4 salt as a simultaneous high-temperature sulfur source and template. The as-synthesized 1T@2H-2D MoS2 exhibits a high yield and can be easily assembled into freestanding electrode with high specific capacitance of 434 F/g at a scan rate of 1 mV/s in LiClO4 ethylene carbonate/dimethyl carbonate (EC/DMC). Moreover, various single-crystal 2D transition metal sulfides (WS2, PbS, MnS and Ni9S8) and 2D S-doped carbon can be synthesized using this method. We believe that this study may provide a new sight for scalable and controllable synthesis of other 2D materials beyond 2D MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  2. Liu, L.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

    CAS  Google Scholar 

  3. Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y. W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.

    Google Scholar 

  4. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    CAS  Google Scholar 

  5. Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

    CAS  Google Scholar 

  6. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

    CAS  Google Scholar 

  7. Liu, Y. Y.; Wu, J. J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y. C.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2017, 6, 17127.

    Google Scholar 

  8. Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638.

    CAS  Google Scholar 

  9. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

    CAS  Google Scholar 

  10. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    CAS  Google Scholar 

  11. Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

    CAS  Google Scholar 

  12. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

    CAS  Google Scholar 

  13. Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

    CAS  Google Scholar 

  14. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    CAS  Google Scholar 

  15. Varrla, E.; Backes, C.; Paton, K. R.; Harvey, A.; Gholamvand, Z.; McCauley, J.; Coleman, J. N. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 2015, 27, 1129–1139.

    CAS  Google Scholar 

  16. Zhang, X.; Lai, Z. C.; Tan, C. L.; Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew. Chem., Int. Ed. 2016, 55, 8816–8838.

    CAS  Google Scholar 

  17. Zeng, Z. Y.; Sun, T.; Zhu, J. X.; Huang, X.; Yin, Z. Y.; Lu, G.; Fan, Z. X.; Yan, Q. Y.; Hng, H. H.; Zhang, H. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 2012, 51, 9052–9056.

    CAS  Google Scholar 

  18. Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744–2756.

    CAS  Google Scholar 

  19. Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189–6235.

    CAS  Google Scholar 

  20. Chen, Y.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: A typical study on WS2. Adv. Mater. 2017, 29, 1603500.

    Google Scholar 

  21. Li, C.; Huang, L.; Snigdha, G. P.; Yu, Y. F.; Cao, L. Y. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: The case of GeS. ACS Nano 2012, 6, 8868–8877.

    CAS  Google Scholar 

  22. Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964–969.

    CAS  Google Scholar 

  23. Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

    CAS  Google Scholar 

  24. Wypych, F.; Weber, T.; Prins, R. Scanning tunneling microscopic investigation of 1T-MoS2. Chem. Mater. 1998, 10, 723–727.

    CAS  Google Scholar 

  25. Shi, S. L.; Sun, Z. X.; Hu, Y. H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 2018, 6, 23932–23977.

    CAS  Google Scholar 

  26. Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041.

    CAS  Google Scholar 

  27. Li, X.; Li, X. M.; Zang, X. B.; Zhu, M.; He, Y. J.; Wang, K. L.; Xie, D.; Zhu, H. W. Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers. Nanoscale 2015, 7, 8398–8404.

    CAS  Google Scholar 

  28. Heyne, M. H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I. P.; Caymax, M.; de Marneffe, J. F. et al. Multilayer MoS2 growth by metal and metal oxide sulfurization. J. Mater. Chem. C 2016, 4, 1295–1304.

    CAS  Google Scholar 

  29. Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744–8765.

    CAS  Google Scholar 

  30. Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059–4062.

    CAS  Google Scholar 

  31. Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater. 2018, 30, 1805655.

    Google Scholar 

  32. Xiao, X.; Song, H. B.; Lin, S. Z.; Zhou, Y.; Zhan, X. J.; Hu, Z. M.; Zhang, Q.; Sun, J. Y.; Yang, B.; Li, T. Q. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.

    CAS  Google Scholar 

  33. Startsev, A. N.; Kruglyakova, O. V. Diatomic gaseous sulfur obtained at low temperature catalytic decomposition of hydrogen sulfide. J. Chem. Chem. Eng. 2013, 7, 1007–1013.

    CAS  Google Scholar 

  34. Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.

    Google Scholar 

  35. Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2017, 56, 7610–7614.

    CAS  Google Scholar 

  36. Yoo, H. D.; Li, Y. F.; Liang, Y. L.; Lan, Y. C.; Wang, F.; Yao, Y. Intercalation pseudocapacitance of exfoliated molybdenum disulfide for ultrafast energy storage. ChemNanoMat 2016, 2, 688–691.

    CAS  Google Scholar 

  37. Wang, X.; Ding, W.; Li, H.; Li, H.; Zhu, S. J.; Zhu, X. G.; Dai, J. M.; Sheng, Z. G.; Wang, H.; Zhu, X. B. et al. Unveiling highly ambient-stable multilayered 1T-MoS2 towards all-solid-state flexible supercapacitors. J. Mater. Chem. A 2019, 7, 19152–19160.

    CAS  Google Scholar 

  38. Patil, S. J.; Kim, J. H.; Lee, D. W. Graphene-nanosheet wrapped cobalt sulphide as a binder free hybrid electrode for asymmetric solid-state supercapacitor. J. Power Sources 2017, 342, 652–665.

    CAS  Google Scholar 

  39. Zhou, R.; Han, C. J.; Wang, X. M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J. Power Sources 2017, 352, 99–110.

    CAS  Google Scholar 

  40. Majumder, M.; Choudhary, R. B.; Koiry, S. P.; Thakur, A. K.; Kumar, U. Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications. Electrochim. Acta 2017, 248, 98–111.

    CAS  Google Scholar 

  41. Zhang, S. W.; Yin, B. S.; Wang, Z. B.; Peter, F. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem. Eng. J. 2016, 306, 193–203.

    CAS  Google Scholar 

  42. Karade, S. S.; Dubal, D. P.; Sankapal, B. R. Decoration of ultrathin MoS2 nanoflakes over MWCNTs: Enhanced supercapacitive performance through electrode to symmetric all-solid-state device. ChemistrySelect 2017, 2, 10405–10412.

    CAS  Google Scholar 

  43. Chen, Y. X.; Ma, W. J.; Cai, K. F.; Yang, X. W.; Huang, C. J. In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim. Acta 2017, 246, 615–624.

    CAS  Google Scholar 

  44. Li, Y. J.; Wang, G. L.; Wei, T.; Fan, Z. J.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165–175.

    CAS  Google Scholar 

  45. Cook, J. B.; Kim, H. S.; Lin, T. C.; Lai, C. H.; Dunn, B.; Tolbert, S. H. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Adv. Energy Mater. 2017, 7, 1601283.

    Google Scholar 

  46. Jia, Y. L.; Wan, H. Q.; Chen, L.; Zhou, H. D.; Chen, J. M. Hierarchical nanosheet-based MoS2/graphene nanobelts with high electrochemical energy storage performance. J. Power Sources 2017, 354, 1–9.

    CAS  Google Scholar 

  47. Mahmood, A.; Zou, R. Q.; Wang, Q. F.; Xia, W.; Tabassum, H.; Qiu, B.; Zhao, R. Nanostructured electrode materials derived from metal-organic framework xerogels for high-energy-density asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 2148–2157.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51972124, 51872101, 51672097, 51902115, and 61434001), the National Program for Support of Top-notch Young Professionals, and the program for the HUST Academic Frontier Youth Team. We wish to thank the facility support from the Center for Nanoscale Characterization & Devices, WNLO of HUST and the Analytical and Testing Center of HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Huang.

Supplementary Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Xiong, L., Wu, J. et al. Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2. Nano Res. 13, 2933–2938 (2020). https://doi.org/10.1007/s12274-020-2950-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2950-2

Keywords

Navigation