Skip to main content
Log in

Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Since most organic materials are very sensitive to moisture and oxygen, organic light emitting diodes (OLEDs) require an encapsulation layer to protect the active layer from these gases. Since light, flexible and portable OLEDs are being employed in more diverse climates and environmental conditions, the OLED encapsulation layer must retain robust mechanical properties and stability in high temperature/high humidity conditions. Al2O3 films have demonstrated excellent barrier performance, but they readily hydrolyze when exposed to prolonged harsh environments. In this study, we fabricated a thin film encapsulation (TFE) film that was resistant to hydrolysis, using Al2O3/MgO (AM) nanolaminates. MgO has superior resistance to harsh environments, and the aluminate phase generated by the chemical reaction of Al2O3 and MgO provided excellent barrier performance, even after storage in harsh conditions. A multi-barrier fabricated using the AM nanolaminate showed excellent barrier performance, close to the level required by OLEDs. It did not significantly deteriorate even after a bending test of 1,000 iterations at 0.63% strain. After 1,000 cycle of bending, the electrical properties of the passivated OLEDs were not significantly degraded at shelf-lifetime test where the fabricated device was stored for 50 days in a harsh environment of 60 °C, 90% relative humidity. The multi-barrier shows the best performance compared to previous studies on flexible encapsulation that can be used in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaer, M.; Nüesch, F.; Berner, D.; Leo, W.; Zuppiroli, L. Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv. Funct. Mater.2001, 11, 116–121.

    CAS  Google Scholar 

  2. Lee, S. M.; Kwon, J. H.; Kwon, S.; Choi, K. C. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron Devices2017, 64, 1922–1931.

    CAS  Google Scholar 

  3. Jeong, E. G; Jeon, Y. M.; Cho, S. H.; Choi, K. C.; Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy Environ. Sci.2019, 12, 1878–1889.

    CAS  Google Scholar 

  4. Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Sapochak, L. S.; McCarty, D. M.; Thompson, M. E. Reliability and degradation of organic light emitting devices. Appl. Phys. Lett.1994, 65, 2922–2924.

    CAS  Google Scholar 

  5. Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H. H.; Riedl, T.; Kowalsky, W. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Appl. Phys. Lett.2009, 94, 233305.

    Google Scholar 

  6. Park, M. H.; Kim, J. Y.; Han, T. H.; Kim, T. S.; Kim, H.; Lee, T. W. Flexible lamination encapsulation. Adv. Mater.2015, 27, 4308–4314.

    CAS  Google Scholar 

  7. Lewis, J. S.; Weaver, M. S. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron.2004, 10, 45–57.

    CAS  Google Scholar 

  8. Seo, H. K.; Park, M. H.; Kim, Y. H.; Kwon, S. J.; Jeong, S. H.; Lee, T. W. Laminated graphene films for flexible transparent thin film encapsulation. ACS Appl. Mater. Interfaces2016, 8, 14725–14731.

    Google Scholar 

  9. Seo, S. W.; Jung, E.; Chae, H.; Cho, S. M. Optimization of ZrO2 nanolaminate structure for thin-film encapsulation of OLEDs. Org. Electron.2012, 13, 2436–2441.

    CAS  Google Scholar 

  10. Lin, Y. Y.; Chang, Y. N.; Tseng, M. H.; Wang, C. C.; Tsai, F. Y. Air-stable flexible organic light-emitting diodes enabled by atomic layer deposition. Nanotechnology2015, 26, 024005.

    CAS  Google Scholar 

  11. Choi, J. H.; Kim, Y. M.; Park, Y. W.; Park, T. H.; Jeong, J. W.; Choi, H. J.; Song, E. H.; Lee, J. W.; Kim, C. H.; Ju, B. K. Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications. Nanotechnolog.2010, 21, 475203.

    Google Scholar 

  12. Yoon, K. H.; Kim, H. S.; Han, K. S.; Kim, S. H.; Lee, Y. E. K.; Shrestha, N. K.; Song, S. Y.; Sung, M. M. Extremely high barrier performance of organic-inorganic nanolaminated thin films for organic light-emitting diodes. ACS Appl. Mater. Interfaces2017, 9, 5399–5408.

    CAS  Google Scholar 

  13. Han, Y. C.; Kim, E.; Kim, W.; Im, H. G.; Bae, B. S.; Choi, K. C. A flexible moisture barrier comprised of a SiO2-embedded organic-inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs. Org. Electron.2013, 14, 1435–1440.

    CAS  Google Scholar 

  14. Kim, E.; Han, Y.; Kim, W.; Choi, K. C.; Im, H. G.; Bae, B. S. Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials. Org. Electron.2013, 14, 1737–1743.

    CAS  Google Scholar 

  15. Lee, Y. G.; Park, J. J.; Kee, I. S.; Shim, H. S.; Ko, I. H.; Choi, Y. H.; Bulliard, X.; Kim, S. Y.; Kim, J. M. P-214: Ultra thin-film encapsulation for AMOLED displays. SID Symp. Dig. Tech. Pap.2008, 39, 2011–2013.

    CAS  Google Scholar 

  16. Choi, S.; Kwon, S.; Kim, H.; Kim, W.; Kwon, J. H.; Lim, M. S.; Lee, H. S.; Choi, K. C. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep.2017, 7, 6424.

    Google Scholar 

  17. Kwon, S.; Kim, H.; Choi, S.; Jeong, E. G.; Kim, D.; Lee, S.; Lee, H. S.; Seo, Y. C.; Choi, K. C. Weavable and highly efficient organic light-emitting fibers for wearable electronics: A scalable, low-temperature process. Nano Lett.2018, 18, 347–356.

    CAS  Google Scholar 

  18. Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv.2016, 2, e1501856.

    Google Scholar 

  19. Yin, D.; Feng, J.; Ma, R.; Liu, Y. F.; Zhang, Y. L.; Zhang, X. L.; Bi, Y. G.; Chen, Q. D.; Sun, H. B. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun.2016, 7, 11573.

    CAS  Google Scholar 

  20. Kwon, J. H.; Jeon, Y.; Choi, S.; Park, J. W.; Kim, H.; Choi, K. C. Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl. Mater. Interfaces2017, 9, 43983–43992.

    CAS  Google Scholar 

  21. Park, J. S.; Chae, H.; Chung, H. K.; Lee, S. I. Thin film encapsulation for flexible AM-OLED: A review. Semicond. Sci. Technol.2011, 26, 034001.

    Google Scholar 

  22. Park, J.; Yoon, H. R;, Khan, M. A.; Cho, S.; Sung, M. M.; Selective infiltration in polymer hybrid thin films as a gas-encapsulation layer for stretchable electronics. ACS Appl. Mater. Interfaces2020, 12, 8817–8825.

    CAS  Google Scholar 

  23. Kwon, J. H.; Kim, E.; Im, H. G.; Bae, B. S.; Chang, K. S.; Ko Park, S. H.; Choi, K. C. Metal-containing thin-film encapsulation with flexibility and heat transfer. J. Inf. Disp.2015, 16, 123–128.

    CAS  Google Scholar 

  24. Dameron, A. A.; Davidson, S. D.; Burton, B. B.; Carcia, P. F.; McLean, R. S.; George, S. M. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C.2008, 112, 4573–4580.

    CAS  Google Scholar 

  25. Meyer, J.; Görrn, P.; Bertram, F.; Hamwi, S.; Winkler, T.; Johannes, H. H.; Weimann, T.; Hinze, P.; Riedl, T.; Kowalsky, W. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics. Adv. Mater.2009, 21, 1845–1849.

    CAS  Google Scholar 

  26. Kim, L. H.; Kim, K.; Park, S.; Jeong, Y. J.; Kim, H.; Chung, D. S.; Kim, S. H.; Park, C. E. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces2014, 6, 6731–6738.

    CAS  Google Scholar 

  27. Choi, D. W.; Kim, S. J.; Lee, J. H.; Chung, K. B.; Park, J. S. A study of thin film encapsulation on polymer substrate using low temperature hybrid ZnO/Al2O3 layers atomic layer deposition. Curr. Appl. Phys.2012, 12, S19–S23.

    Google Scholar 

  28. Meyer, J.; Schmidt, H.; Kowalsky, W.; Riedl, T.; Kahn, A. The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett.2010, 96, 243308.

    Google Scholar 

  29. Singh, A.; Klumbies, H.; Schröder, U.; Müller-Meskamp, L.; Geidel, M.; Knaut, M.; Hoßbach, C.; Albert, M.; Leo, K.; Mikolajick, T. Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using X-ray reflectivity investigations. Appl. Phys. Lett.2013, 103, 233302.

    Google Scholar 

  30. Vangelista, S.; Mantovan, R.; Lamperti, A.; Tallarida, G.; Kutrzeba-Kotowska, B.; Spiga, S.; Fanciulli, M. Low-temperature atomic layer deposition of MgO thin films on Si. J. Phys. D Appl. Phys.2013, 46, 485304.

    Google Scholar 

  31. Graff, G. L.; Williford, R. E.; Burrows, P. E. Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J. Appl. Phys.2004, 96, 1840–1849.

    CAS  Google Scholar 

  32. Chatham, H. Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf. Coatings Technol.1996, 78, 1–9.

    CAS  Google Scholar 

  33. Da Silva Sobrinho, A. S.; Latrèche, M.; Czeremuszkin, G.; Klemberg-Sapieha, J. E.; Wertheimer, M. R. Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol. A1998, 16, 3190–3198.

    CAS  Google Scholar 

  34. Henry, B. M.; Erlat, A. G; McGuigan, A.; Grovenor, C. R. M.; Briggs, G. A. D.; Tsukahara, Y.; Miyamoto, T.; Noguchi, N.; Niijima, T. Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates. Thin Solid Films2001, 382, 194–201.

    CAS  Google Scholar 

  35. Jeong, E. G.; Kwon, J. H.; Kang, K. S.; Jeong, S. Y.; Choi, K. C. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. J. Inf. Disp.2019, 21, 19–32.

    Google Scholar 

  36. Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G; Choi, K. C. Recent progress of fiber shaped lighting devices for smart display applications—A fibertronic perspective. Adv. Mater.2019, 32, 1903488.

    Google Scholar 

  37. Li, M.; Xu, M.; Zou, J. H.; Tao, H.; Wang, L.; Zhou, Z. W.; Peng, J. B. Realization of Al2O3/MgO laminated structure at low temperature for thin film encapsulation in organic light-emitting diodes. Nanotechnology2016, 27, 494003.

    Google Scholar 

  38. Wang, L.; Ruan, C. P.; Li, M.; Zou, J. H.; Tao, H.; Peng, J. B.; Xu, M. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J. Mater. Chem. C2017, 5, 4017–4024.

    CAS  Google Scholar 

  39. Jin, J.; Lee, J. J.; Bae, B. S.; Park, S. J.; Yoo, S.; Jung, K. Silica nanoparticle-embedded sol-gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation. Org. Electron.2012, 13, 53–57.

    CAS  Google Scholar 

  40. Paetzold, R.; Winnacker, A.; Henseler, D.; Cesari, V.; Heuser, K. Permeation rate measurements by electrical analysis of calcium corrosion. Rev. Sci. Instrum.2003, 74, 5147–5150.

    CAS  Google Scholar 

  41. Tadanaga, K.; Katata, N.; Minami, T. Super-water-repellent Al2O3 coating films with high transparency. J. Am. Ceram. Soc.1997, 80, 1040–1042.

    CAS  Google Scholar 

  42. Pasieczna-Patkowska, S.; Ryczkowski, J. Spectroscopic studies of alumina supported nickel catalysts precursors: Part II—Catalysts prepared from alkaline solutions. Ann. UMCS. Chem.2010, 65, 121–131.

    CAS  Google Scholar 

  43. Hausmann, D. M.; Gordon, R. G. Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth2003, 249, 251–261.

    CAS  Google Scholar 

  44. Li, M.; Xu, M.; Zou, J. H.; Tao, H.; Wang, L.; Zhou, Z. W.; Peng, J. B. Realization of Al2O3/MgO laminated structure at low temperature for thin film encapsulation in organic light-emitting diodes. Nanotechnology2016, 27, 494003.

    Google Scholar 

  45. Choi, K.C.; Kwon, J. H. Encapsulation structure for transparent flexible organic electronic device. U.S. Patent 10,529,951, Jan 7, 2020.

  46. Allred, A. L. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem.1961, 17, 215–221.

    CAS  Google Scholar 

  47. Hall, E. O. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B1951, 64, 747–753.

    Google Scholar 

  48. Jeong, E. G.; Han, Y. C.; Im, H. G.; Bae, B. S.; Choi, K. C. Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs. Org. Electron.2016, 33, 150–155.

    CAS  Google Scholar 

  49. Jeong, E. G.; Kwon, S.; Han, J. H.; Im, H. G.; Bae, B. S.; Choi, K. C. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale2017, 9, 6370–6379.

    CAS  Google Scholar 

  50. Choi, K. C.; Jeong, E. G. Nano stratified encapsulation structure, method of manufacturing the same, and flexible organic light emitting diode device. Republic of Korea Patent KR101988576B1, Jun 13, 2019.

Download references

Acknowledgements

This research was supported by the Engineering Research Center of Excellence (ERC) Program supported by the National Research Foundation (NRF) of the Korean Ministry of Science, ICT & Future Planning (MSIP) (Grant No. NRF-2017R1A5A1014708). The authors express sincere gratitude to National NanoFab (NNFC) for the measurements. We also thank Prof. Byeong-Soo Bae from KAIST for help in synthesis of the polymers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun Gyo Jeong or Kyung Cheol Choi.

Electronic Supplementary Material

12274_2020_2915_MOESM1_ESM.pdf

Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K.S., Jeong, S.Y., Jeong, E.G. et al. Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs. Nano Res. 13, 2716–2725 (2020). https://doi.org/10.1007/s12274-020-2915-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2915-5

Keywords

Navigation