Skip to main content
Log in

Graphitic nanorings for super-long lifespan lithium-ion capacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous graphitic carbon nanorings (PGCNs) are proposed by smart catalytic graphitization of nano-sized graphene quantum dots (GQDs). The as-prepared PGCNs show unique ring-like morphology with diameter around 10 nm, and demonstrate extraordinary mesoporous structure, controllable graphitization degree and highly defective nature. The mechanism from GQDs to PGCNs is proven to be a dissolution-precipitation process, undergoing the procedure of amorphous carbon, intermediate phase, graphitic carbon nanorings and graphitic carbon nanosheets. Further, the relationship between particles size of GQDs precursor and graphitization degree of PGCNs products is revealed. The unique microstructure implies PGCNs a broad prospect for energy storage application. When applied as negative electrode materials in dual-carbon lithium-ion capacitors, high energy density (77.6 Wh·kg−1) and super long lifespan (89.5% retention after 40,000 cycles at 5.0 A·g−1) are obtained. The energy density still maintains at 24.5 Wh·kg−1 even at the power density of 14.1 kW·kg−1, demonstrating excellent rate capability. The distinct microstructure of PGCNs together with the strategy for catalytic conversion from nanocarbon precursors to carbon nanorings opens a new window for carbon materials in electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou, L. L.; Kitta, M.; Hong, J. H.; Suenaga, K.; Tsumori, N.; Liu, Z.; Xu, Q. Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 2019, 31, 1900440.

    Google Scholar 

  2. Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. G. Graphite anode for a potassium-Ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

    CAS  Google Scholar 

  3. Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M.; Fang, Z. B.; Wang, C. Z.; Wei, Y. J.; Chen, G.; Zhang, D.; Sun, Z. H. et al. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries. Nano Energy 2018, 49, 137–146.

    Google Scholar 

  4. Zheng, J. S.; Qin, N.; Jin, L. M.; Guo, X.; Shen, C.; Wu, Q.; Zheng, J. P. Constructing an unbalanced structure toward high working voltage for improving energy density of non-aqueous carbon-based electrochemical capacitors. Chin. Chem. Lett. 2020, 31, 903–908.

    CAS  Google Scholar 

  5. Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater, DOI: https://doi.org/10.1002/adma.201904177.

  6. Park, S. K.; Kwon, S. H.; Lee, S. G.; Choi, M. S.; Suh, D. H.; Nakhanivej, P.; Lee, H.; Park, H. S. 105 cyclable pseudocapacitive Na-Ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes. ACS Energy Lett. 2018, 3, 724–732.

    CAS  Google Scholar 

  7. Hoang, V. C.; Dave, K.; Gomes, V. G. Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy 2019, 66, 104093.

    CAS  Google Scholar 

  8. Liu, S. N.; Zhao, T. Q.; Tan, X. H.; Guo, L. M.; Wu, J. X.; Kang, X. H.; Wang, H. F.; Sun, L. F.; Chu, W. G. 3D pomegranate-like structures of porous carbon microspheres self-assembled by hollow thin-walled highly-graphitized nanoballs as sulfur immobilizers for Li-S batteries. Nano Energy 2019, 63, 103894.

    CAS  Google Scholar 

  9. Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 2018, 30, 1704449.

    Google Scholar 

  10. Yao, L.; Wu, Q.; Zhang, P. X.; Zhang, J. M.; Wang, D. R.; Li, Y. L.; Ren, X. Z.; Mi, H. W.; Deng, L. B.; Zheng, Z. J. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 2018, 30, 1706054.

    Google Scholar 

  11. Jin, L. M.; Guo, X.; Gong, R. Q.; Zheng, J. S.; Xiang, Z. H.; Zhang, C. M.; Zheng, J. P. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors. Energy Storage Mater. 2019, 23, 409–417.

    Google Scholar 

  12. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636.

    CAS  Google Scholar 

  13. Li, X. M.; Rui, M. C.; Song, J. Z.; Shen, Z. H.; Zeng H. B. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929–4947.

    CAS  Google Scholar 

  14. Zhu, Z. J.; Zhai, Y. L.; Li, Z. H.; Zhu, P. Y.; Mao, S.; Zhu, C. Z.; Du, D.; Belfiore, L. A.; Tang, J. G.; Lin, Y. H. Red carbon dots: Optical property regulations and applications. Mater. Today 2019, 30, 52–79.

    CAS  Google Scholar 

  15. Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

    Google Scholar 

  16. Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

    CAS  Google Scholar 

  17. Ge, P.; Li, S. J.; Xu, L. Q.; Zou, K. Y.; Gao, X.; Cao, X. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 2019, 9, 1803035.

    Google Scholar 

  18. Shi, Z. J.; Chu, W. J.; Hou, Y. D.; Gao, Y. F.; Yang, N. J. Asymmetric supercapacitors with high energy densities. Nanoscale 2019, 11, 11946–11955.

    CAS  Google Scholar 

  19. Byeon, A.; Glushenkov, A. M.; Anasori, B.; Urbankowski, P.; Li, J. W.; Byles, B. W.; Blake, B.; Van Aken, K. L.; Kota, S.; Pomerantseva, E. et al. Lithium-ion capacitors with 2D Nb2CTx (MXene) — carbon nanotube electrodes. J. Power Sources 2016, 326, 686–694.

    CAS  Google Scholar 

  20. Jin, L. M.; Guo, X.; Shen, C.; Qin, N.; Zheng, J. S.; Wu, Q.; Zhang, C. M.; Zheng, J. P. A universal matching approach for high power-density and high cycling-stability lithium ion capacitor. J. Power Sources 2019, 441, 227211.

    CAS  Google Scholar 

  21. Wang, P.; Zhang, G.; Li, M. Y.; Yin, Y. X.; Li, J. Y.; Li, G.; Wang, W. P.; Peng, W.; Cao, F. F.; Guo, Y. G. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J. 2019, 375, 122020.

    CAS  Google Scholar 

  22. Abbas, S. A.; Forghani, M.; Anh, S.; Donne, S. W.; Jung, K. D. Carbon hollow spheres as electrochemical capacitors: Mechanistic insights. Energy Storage Mater. 2020, 24, 550–556.

    Google Scholar 

  23. Li, Z.; Cao, L. J.; Chen, W.; Huang, Z. C.; Liu, H. Mesh-like carbon nanosheets with high-level nitrogen doping for high-energy dual-carbon lithium-ion capacitors. Small 2019, 15, 1805173.

    Google Scholar 

  24. Wang, H. W.; Zhu, C. R.; Chao, D. L.; Yan, Q. Y.; Fan, H. J. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 2017, 29, 1702093.

    Google Scholar 

  25. Dong, S. Y.; Li, H. S.; Wang, J. J.; Zhang, X. G.; Ji, X. L. Improved flexible li-ion hybrid capacitors: Techniques for superior stability. Nano Res. 2017, 10, 4448–4456.

    CAS  Google Scholar 

  26. Jin, L. M.; Gong, R. Q.; Zhang, W. C.; Xiang, Y.; Zheng, J. S.; Xiang, Z. H.; Zhang, C. M.; Xia, Y. Y.; Zheng, J. P. Toward high energy-density and long cycling-lifespan lithium ion capacitors: A 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode. J. Mater. Chem. A 2019, 7, 8234–8244.

    CAS  Google Scholar 

  27. Jagadale, A.; Zhou, X.; Xiong, R.; Dubal, D. P.; Xu, J.; Yang, S. Lithium ion capacitors (LICs): Development of the materials. Energy Storage Mater. 2019, 19, 314–329.

    Google Scholar 

  28. Li, G. C.; Yang, Z. W.; Yin, Z. L.; Guo, H. J.; Wang, Z. X.; Yan, G. C.; Liu, Y.; Li, L. J.; Wang, J. X. Non-aqueous dual-carbon lithium-ion capacitors: A review. J. Mater. Chem. A 2019, 7, 15541–15563.

    CAS  Google Scholar 

  29. Yu, X. L.; Zhan, C. Z.; Lv, R. T.; Bai, Y.; Lin, Y. X.; Huang, Z. H.; Shen, W. C.; Qiu, X. P.; Kang, F. Y. Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 2015, 15, 43–53.

    CAS  Google Scholar 

  30. Liu, C. F.; Zhang, C. K.; Song, H. Q.; Zhang, C. P.; Liu, Y. G.; Nan, X. H.; Cao, G. Z. Mesocrystal MnO cubes as anode for Li-Ion capacitors. Nano Energy 2016, 22, 290–300.

    CAS  Google Scholar 

  31. Yang, Z. W.; Guo, H. J.; Li, X. H.; Wang, Z. X.; Wang, J. X.; Wang, Y. S.; Yan, Z. L.; Zhang, D. C. Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors. J. Mater. Chem. A 2017, 5, 15302–15309.

    CAS  Google Scholar 

  32. Sivakkumar, S. R.; Milev, A. S.; Pandolfo, A. G. Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors. Electrochim. Acta 2011, 56, 9700–9706.

    CAS  Google Scholar 

  33. Li, B.; Zheng, J. S.; Zhang, H. Y.; Jin, L. M.; Yang, D. J.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y. R.; Gong, R. Q. et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670.

    Google Scholar 

  34. Li, G. C.; Yin, Z. L.; Guo, H. J.; Wang, Z. X.; Yan, G. C.; Yang, Z. W.; Liu, Y.; Ji, X. B.; Wang J. X. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithiumion hybrid supercapacitor. Adv. Energy Mater. 2019, 9, 1802878.

    Google Scholar 

  35. Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption. Adv. Sci. 2019, 6, 1802331.

    Google Scholar 

  36. Tan, J.; Chen, H. B.; Gao, Y.; Li, H. M. Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance. Electrochim. Acta 2015, 178, 144–152.

    CAS  Google Scholar 

  37. Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L. G.; Li, D.; Tan, H. Q.; Zhao, Z.; Xie, Z. G.; Sun, Z. C. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272–12277.

    CAS  Google Scholar 

  38. Liu, Z. Z.; Gong, Y.; Fan, Z. F. A dopamine-modulated nitrogen-doped graphene quantum dot fluorescence sensor for the detection of glutathione in biological samples. New J. Chem. 2016, 40, 8911–8917.

    CAS  Google Scholar 

  39. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    CAS  Google Scholar 

  40. Wei, G. J.; Su, W.; Wei, Z. F.; Jing, M. H.; Fan, X. Z.; Liu, J. G.; Yan, C. W. Effect of the graphitization degree for electrospun carbon nanofibers on their electrochemical activity towards VO2+/VO2+ redox couple. Electrochim. Acta 2016, 199, 147–153.

    CAS  Google Scholar 

  41. Song, J. J.; Sun, B.; Liu, H.; Ma, Z. P.; Chen, Z. H.; Shao, G. J.; Wang, G. X. Enhancement of the rate capability of LiFePO4 by a new highly graphitic carbon-coating method. ACS Appl. Mater. Interfaces 2016, 8, 15225–15231.

    CAS  Google Scholar 

  42. Chen, M.; Yu, C.; Liu, S. H.; Fan, X. M.; Zhao, C. T.; Zhang, X.; Qiu, J. S. Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale 2015, 7, 1791–1795.

    CAS  Google Scholar 

  43. Zhou, X. Y.; Chen, F.; Bai, T.; Long, B.; Liao, Q. C.; Ren, Y. P.; Yang, J. Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem. 2016, 18, 2078–2088.

    CAS  Google Scholar 

  44. Zhu, J. B.; Xu, Y. L.; Zhang, Y.; Feng, T. Y.; Wang, J.; Mao, S. C.; Xiong, L. L. Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon 2016, 107, 638–645.

    CAS  Google Scholar 

  45. Park, S. K.; Lee, H.; Choi, M. S.; Suh, D. H.; Nakhanivej, P.; Park, H. S. Straightforward and controllable synthesis of heteroatom-doped carbon dots and nanoporous carbons for surface-confined energy and chemical storage. Energy Storage Mater. 2018, 12, 331–340.

    Google Scholar 

  46. Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

    CAS  Google Scholar 

  47. Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048–3058.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51974370 and 51874360), the Program of Huxiang Young Talents (No. 2019RS2002), the Innovation and Entrepreneurship Project of Hunan Province, China (No. 2018GK5026), and the Fundamental Research Funds for the Central Universities of Central South University (No. 2019zzts225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiexi Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Yin, Z., Dai, Y. et al. Graphitic nanorings for super-long lifespan lithium-ion capacitors. Nano Res. 13, 2909–2916 (2020). https://doi.org/10.1007/s12274-020-2811-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2811-z

Keywords

Navigation