Skip to main content
Log in

Self-organization of various “phase-separated” nanostructures in a single chemical vapor deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD) is one of the most versatile techniques for the controlled synthesis of functional nanomaterials. When multiple precursors are induced, the CVD process often gives rise to the growth of doped or alloy compounds. In this work, we demonstrate the self-assembly of a variety of ‘phase-separated’ functional nanostructures from a single CVD in the presence of various precursors. In specific, with silicon substrate and powder of Mn and SnTe as precursors, we achieved self-organized nanostructures including Si/SiOx core-shell nanowire heterostructures both with and without embedded manganese silicide particles, Mn11Si19 nanowires, and SnTe nanoplates. The Si/SiOx core-shell nanowires embedded with manganese silicide particles were grown along the <111> direction of the crystalline Si via an Au-catalyzed vapor-liquid-solid process, in which the Si and Mn vapors were supplied from the heated silicon substrates and Mn powder, respectively. In contrast, direct vapor-solid deposition led to particle-free <110>-oriented Si/SiOx core-shell nanowires and <100>-oriented Mn11Si19 nanowires, a promising thermoelectric material. No Sn or Te impurities were detected in these nanostructures down to the experimental limit. Topological crystalline insulator SnTe nanoplates with dominant {100} and {111} facets were found to be free of Mn (and Si) impurities, although nanoparticles and nanowires containing Mn were found in the vicinity of the nanoplates. While multiple-channel transport was observed in the SnTe nanoplates, it may not be related to the topological surface states due to surface oxidation. Finally, we carried out thermodynamic analysis and density functional theory calculations to understand the ‘phase-separation’ phenomenon and further discuss general approaches to grow phase-pure samples when the precursors contain residual impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull.2003, 28, 486–491.

    CAS  Google Scholar 

  2. Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science2001, 294, 1313–1317.

    CAS  Google Scholar 

  3. Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett.2003, 3, 149–152.

    CAS  Google Scholar 

  4. Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B2000, 104, 5213–5216.

    CAS  Google Scholar 

  5. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature2007, 449, 885–889.

    CAS  Google Scholar 

  6. Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett.2010, 10, 1082–1087.

    CAS  Google Scholar 

  7. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol.2008, 3, 31–35.

    CAS  Google Scholar 

  8. Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard III, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Dusastre, V., Ed.; Singapore: World Scientific, 2010; pp 116–119.

    Google Scholar 

  9. Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature2008, 451, 163–167.

    CAS  Google Scholar 

  10. Kang, M.; Yuwen, Y.; Hu, W. C.; Yun, S.; Mahalingam, K.; Jiang, B.; Eyink, K.; Poutrina, E.; Richardson, K.; Mayer, T. S. Self-organized freestanding one-dimensional Au nanoparticle arrays. ACS Nano.2017, 11, 5844–5852.

    CAS  Google Scholar 

  11. Park, G. S.; Kwon, H.; Lee, E. K.; Kim, S. K.; Lee, J. H.; Li, X. S.; Chung, J. G.; Heo, S.; Song, I. Y.; Lee, J. H. et al. Fabrication of surface plasmon-coupled Si nanodots in Au-embedded silicon oxide nanowires. Adv. Mater.2010, 22, 2421–2425.

    CAS  Google Scholar 

  12. Pescaglini, A.; Iacopino, D. Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing. J. Mater. Chem. C2015, 3, 11785–11800.

    CAS  Google Scholar 

  13. Hu, M. S.; Chen, H. L.; Shen, C. H.; Hong, L. S.; Huang, B. R.; Chen, K. H.; Chen, L. C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat. Mater.2006, 5, 102–106.

    CAS  Google Scholar 

  14. Lin, X.; Li, S. H.; Lu, K. Q.; Tang, Z. R.; Xu, Y. J. Constructing film composites of silicon nanowires@CdS quantum dot arrays with ameliorated photocatalytic performance. New J. Chem.2018, 42, 14096–14103.

    CAS  Google Scholar 

  15. Agarwal, D.; Aspetti, C. O.; Cargnello, M.; Ren, M. L.; Yoo, J.; Murray, C. B.; Agarwal, R. Engineering localized surface plasmon interactions in gold by silicon nanowire for enhanced heating and photocatalysis. Nano Lett.2017, 17, 1839–1845.

    CAS  Google Scholar 

  16. Higgins, J. M.; Schmitt, A. L.; Guzei, I. A.; Jin, S. Higher manganese silicide nanowires of nowotny chimney ladder phase. J. Am. Chem. Soc.2008, 130, 16086–16094.

    CAS  Google Scholar 

  17. Girard, S. N.; Chen, X.; Meng, F.; Pokhrel, A.; Zhou, J. S.; Shi, L.; Jin, S. Thermoelectric properties of undoped high purity higher manganese silicides grown by chemical vapor transport. Chem. Mater.2014, 26, 5097–5104.

    CAS  Google Scholar 

  18. Pokhrel, A.; Degregorio, Z. P.; Higgins, J. M.; Girard, S. N.; Jin, S. Vapor phase conversion synthesis of higher manganese silicide (MnSi1.75) nanowire arrays for thermoelectric applications. Chem. Mater.2013, 25, 632–638.

    CAS  Google Scholar 

  19. Higgins, J. M.; Ding, R. H.; DeGrave, J. P.; Jin, S. Signature of helimagnetic ordering in single-crystal MnSi nanowires. Nano Lett.2010, 10, 1605–1610.

    CAS  Google Scholar 

  20. Fu, L. Topological crystalline insulators. Phys. Rev. Lett.2011, 106, 106802.

    Google Scholar 

  21. Hsieh, T. H.; Lin, H.; Liu, J. W.; Duan, W. H.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun.2012, 3, 982.

    Google Scholar 

  22. Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K.; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys.2012, 8, 800–803.

    CAS  Google Scholar 

  23. Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B. M.; Berntsen, M. H. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nat. Mater.2012, 11, 1023–1027.

    CAS  Google Scholar 

  24. Okada, Y.; Serbyn, M.; Lin, H.; Walkup, D.; Zhou, W. W.; Dhital, C.; Neupane, M.; Xu, S. Y.; Wang, Y. J.; Sankar, R. et al. Observation of Dirac Node Formation and Mass Acquisition in a topological crystalline insulator. Science2013, 341, 1496–1499.

    CAS  Google Scholar 

  25. Xu, S. Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, I.; Denlinger, J. D.; Wang, Y. J.; Lin, H.; Wray, L. A. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun.2012, 3, 1192.

    Google Scholar 

  26. Littlewood, P. B.; Mihaila, B.; Schulze, R. K.; Safarik, D. J.; Gubernatis, J. E.; Bostwick, A.; Rotenberg, E.; Opeil, C. P.; Durakiewicz, T.; Smith, J. L. et al. Band structure of SnTe studied by photoemission spectroscopy. Phys. Rev. Lett.2010, 105, 086404.

    CAS  Google Scholar 

  27. Li, Z.; Shao, S.; Li, N.; McCall, K.; Wang, J.; Zhang, S. X. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies. Nano Lett.2013, 13, 5443–5448.

    CAS  Google Scholar 

  28. Wang, Q. S.; Cai, K. M.; Li, J.; Huang, Y.; Wang, Z. X.; Xu, K.; Wang, F.; Zhan, X. Y.; Wang, F. M.; Wang, K. Y. et al. Rational design of ultralarge Pb1−xSnxTe nanoplates for exploring crystalline symmetry-protected topological transport. Adv. Mater.2016, 28, 617–623.

    Google Scholar 

  29. Xu, E. Z.; Li, Z.; Acosta, J. A.; Li, N.; Swartzentruber, B.; Zheng, S. J.; Sinitsyn, N.; Htoon, H.; Wang, J.; Zhang, S. X. Enhanced thermoelectric properties of topological crystalline insulator PbSnTe nanowires grown by vapor transport. Nano Res.2016, 9, 820–830.

    CAS  Google Scholar 

  30. Zou, Y. C.; Chen, Z. G.; Kong, F. T.; Lin, J.; Drennan, J.; Cho, K.; Wang, Z. C.; Zou, J. Planar vacancies in Sn1−xBixTe nanoribbons. ACS Nano.2016, 10, 5507–5515.

    CAS  Google Scholar 

  31. Saghir, M.; Sanchez, A. M.; Hindmarsh, S. A.; York, S. J.; Balakrishnan, G. Nanomaterials of the topological crystalline insulators, Pb1−xSnxTe and Pb1−xSnxSe. Cryst. Growth Des.2015, 15, 5202–5206.

    CAS  Google Scholar 

  32. Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; Xu, K.; He, J. Topological surface transport properties of single-crystalline SnTe nanowire. Nano Lett.2013, 13, 5344–5349.

    CAS  Google Scholar 

  33. Wei, F.; Liu, C. W.; Li, D.; Wang, C. Y.; Zhang, H. R.; Sun, J. R.; Gao, X. P. A.; Ma, S.; Zhang, Z. D. Broken mirror symmetry tuned topological transport in PbTe/SnTe heterostructures. Phys. Rev. B2018, 98, 161301.

    CAS  Google Scholar 

  34. Liu, C. W.; Wei, F.; Premasiri, K.; Liu, S. H.; Ma, S.; Zhang, Z. D.; Gao, X. P. A. Non-Drude magneto-transport behavior in a topological crystalline insulator/band insulator heterostructure. Nano Lett.2018, 18, 6538–6543.

    CAS  Google Scholar 

  35. Shen, J.; Jung, Y.; Disa, A. S.; Walker, F. J.; Ahn, C. H.; Cha, J. J. Synthesis of SnTe nanoplates with {100} and {111} surfaces. Nano Lett.2014, 14, 4183–4188.

    CAS  Google Scholar 

  36. Saghir, M.; Lees, M. R.; York, S. J.; Balakrishnan, G. Synthesis and characterization of nanomaterials of the topological crystalline insulator SnTe. Cryst. Growth Des.2014, 14, 2009–2013.

    CAS  Google Scholar 

  37. Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; He, J. Crystal shape engineering of topological crystalline insulator SnTe microcrystals and nanowires with huge thermal activation energy gap. Cryst. Growth Des.2014, 14, 2502–2509.

    CAS  Google Scholar 

  38. Zou, Y. C.; Chen, Z. G.; Lin, J.; Zhou, X. H.; Lu, W.; Drennan, J.; Zou, J. Morphological control of SnTe nanostructures by tuning catalyst composition. Nano Res.2015, 8, 3011–3019.

    CAS  Google Scholar 

  39. Qian, X. F.; Fu, L.; Li, J. Topological crystalline insulator nano-membrane with strain-tunable band gap. Nano Res.2015, 8, 967–979.

    CAS  Google Scholar 

  40. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett.1964, 4, 89–90.

    CAS  Google Scholar 

  41. Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett.2001, 78, 2214–2216.

    CAS  Google Scholar 

  42. Hochbaum, A. I.; Fan, R.; He, R. R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett.2005, 5, 457–460.

    CAS  Google Scholar 

  43. Westwater, J.; Gosain, D. P.; Tomiya, S.; Usui, S.; Ruda, H. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B1997, 15, 554–557.

    CAS  Google Scholar 

  44. Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol.2008, 3, 168–173.

    CAS  Google Scholar 

  45. Schmidt, V.; Wittemann, J. V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater.2009, 21, 2681–2702.

    CAS  Google Scholar 

  46. Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science2005, 310, 1304–1307.

    CAS  Google Scholar 

  47. Duan, X.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater.2000, 12, 298–302.

    CAS  Google Scholar 

  48. Li, Z.; Yang, W. C.; Losovyj, Y.; Chen, J.; Xu, E. Z.; Liu, H. M.; Werbianskyj, M.; Fertig, H. A.; Ye, X. C.; Zhang, S. X. Large-size niobium disulfide nanoflakes down to bilayers grown by sulfurization. Nano Res.2018, 11, 5978–5988.

    CAS  Google Scholar 

  49. Li, Z.; Xu, E. Z.; Losovyj, Y.; Li, N.; Chen, A. P.; Swartzentruber, B.; Sinitsyn, N.; Yoo, J.; Jia, Q. X.; Zhang, S. X. Surface oxidation and thermoelectric properties of indium-doped tin telluride nanowires. Nanoscale2017, 9, 13014–13024.

    CAS  Google Scholar 

  50. Yang, W. C.; Xie, Y. T.; Sun, X.; Zhang, X. H.; Park, K.; Xue, S. C.; Li, Y. L.; Tao, C. G.; Jia, Q. X.; Losovyj, Y. et al. Stoichiometry control and electronic and transport properties of pyrochlore Bi2Ir2O7 thin films. Phys. Rev. Mater.2018, 2, 114206.

    CAS  Google Scholar 

  51. Yang, W. C.; Coughlin, A. L.; Webster, L.; Ye, G. H.; Lopez, K.; Fertig, H. A.; He, R.; Yan, J. A.; Zhang, S. X. Highly tunable Raman scattering and transport in layered magnetic Cr2S3 nanoplates grown by sulfurization. 2D Mater.2019, 6, 035029.

    CAS  Google Scholar 

  52. Zhang, R. Q.; Lifshitz, Y.; Lee, S. T. Oxide-assisted growth of semiconducting nanowires. Adv. Mater.2003, 15, 635–640.

    CAS  Google Scholar 

  53. Fardy, M.; Hochbaum, A. I.; Goldberger, J.; Zhang, M. M.; Yang, P. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater.2007, 19, 3047–3051.

    CAS  Google Scholar 

  54. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science1998, 279, 208–211.

    CAS  Google Scholar 

  55. Lee, S. T.; Zhang, Y. F.; Wang, N.; Tang, Y. H.; Bello, I.; Lee, C. S.; Chung, Y. W. Semiconductor nanowires from oxides. J. Mater. Res.1999, 14, 4503–4507.

    CAS  Google Scholar 

  56. Shi, W. S.; Peng, H. Y.; Zheng, Y. F.; Wang, N.; Shang, N. G.; Pan, Z. W.; Lee, C. S.; Lee, S. T. Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater.2000, 12, 1343–1345.

    CAS  Google Scholar 

  57. Shi, W. S.; Peng, H. Y.; Wang, N.; Li, C. P.; Xu, L.; Lee, C. S.; Kalish, R.; Lee, S. T. Free-standing single crystal silicon nanoribbons. J. Am. Chem. Soc.2001, 123, 11095–11096.

    CAS  Google Scholar 

  58. Lide, D. R. Handbook of Chemistry and Physics; 84th ed. Florida: CRC Press, 2003.

    Google Scholar 

  59. Deringer, V. L.; Dronskowski, R. Stability of pristine and defective SnTe surfaces from first principles. ChemPhysChem.2013, 14, 3108–3111.

    CAS  Google Scholar 

  60. Sugai, S.; Murase, K.; Katayama, S.; Takaoka, S.; Nishi, S.; Kawamura, H. Carrier density dependence of soft TO-phonon in SnTe by Raman scattering. Solid State Commun.1977, 24, 407–409.

    CAS  Google Scholar 

  61. An, C. H.; Tang, K. B.; Hai, B.; Shen, G. Z.; Wang, C. R.; Qian, Y. T. Solution-phase synthesis of monodispersed SnTe nanocrystallites at room temperature. Inorg. Chem. Commun.2003, 6, 181–184.

    CAS  Google Scholar 

  62. Acharya, S.; Pandey, J.; Soni, A. Soft phonon modes driven reduced thermal conductivity in self-compensated Sn1.03Te with Mn doping. Appl. Phys. Lett.2016, 109, 133904.

    Google Scholar 

  63. Berchenko, N.; Vitchev, R.; Trzyna, M.; Wojnarowska-Nowak, R.; Szczerbakow, A.; Badyla, A.; Cebulski, J.; Story, T. Surface oxidation of SnTe topological crystalline insulator. Appl. Surf. Sci.2018, 452, 134–140.

    CAS  Google Scholar 

  64. Neudachina, V. S.; Shatalova, T. B.; Shtanov, V. I.; Yashina, L. V.; Zyubina, T. S.; Tamm, M. E.; Kobeleva, S. P. XPS study of SnTe(100) oxidation by molecular oxygen. Surf. Sci.2005, 584, 77–82.

    CAS  Google Scholar 

  65. Mandale, A. B.; Badrinarayanan, S. X-ray photoelectron spectroscopic studies of the semimagnetic semiconductor system Pb1−xMnxTe. J. Electron Spectrosc. Relat. Phenomena1990, 53, 87–95.

    CAS  Google Scholar 

  66. Kobayashi, K. L.; Kato, Y.; Katayama, Y.; Komatsubara, K. F. Carrier-concentration-dependent phase transition in SnTe. Phys. Rev. Lett.1976, 37, 772–774.

    CAS  Google Scholar 

  67. Brebrick, R. F. Deviations from stoichiometry and electrical properties in SnTe. J. Phys. Chem. Solids1963, 24, 27–36.

    CAS  Google Scholar 

  68. Muldawer, L. New studies of the low temperature transformation in SnTe. J. Nonmetals.1973, 1, 177–182.

    CAS  Google Scholar 

  69. Brillson, L. J.; Burstein, E.; Muldawer, L. Raman observation of the ferroelectric phase transition in SnTe. Phys. Rev. B1974, 9, 1547–1551.

    CAS  Google Scholar 

  70. Inoue, M.; Ishii, K.; Yagi, H. Ferromagnetic ordering in Mn-doped SnTe crystals. J. Phys. Soc. Japan1977, 43, 903–906.

    CAS  Google Scholar 

  71. Reja, S.; Fertig, H. A.; Brey, L.; Zhang, S. X. Surface magnetism in topological crystalline insulators. Phys. Rev. B2017, 96, 201111.

    Google Scholar 

  72. Liu, J. W.; Fang, C.; Fu, L. Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators. Chin. Phys. B2019, 28, 047301.

    CAS  Google Scholar 

  73. Chi, H.; Tan, G. J.; Kanatzidis, M. G.; Li, Q.; Uher, C. A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride. Appl. Phys. Lett.2016, 108, 182101.

    Google Scholar 

  74. Inoue, M.; Tanabe, M.; Yagi, H.; Tatsukawa, T. Transport properties of SnTe-MnTe system: Anomalous Hall effect. J. Phys. Soc. Japan1979, 47, 1879–1886.

    CAS  Google Scholar 

  75. Inoue, M.; Yagi, H.; Ishii, K.; Tatsukawa, T. Electrical resistivity of Mn-doped SnTe crystals at low temperature. J. Low Temp. Phys.1976, 23, 785–790.

    CAS  Google Scholar 

  76. Taskin, A. A.; Yang, F.; Sasaki, S.; Segawa, K.; Ando, Y. Topological surface transport in epitaxial SnTe thin films grown on Bi2Te3. Phys. Rev. B2014, 89, 121302.

    Google Scholar 

  77. Siol, S.; Holder, A.; Ortiz, B. R.; Parilla, P. A.; Toberer, E.; Lany, S.; Zakutayev, A. Solubility limits in quaternary SnTe-based alloys. RSC Adv.2017, 7, 24747–24753.

    CAS  Google Scholar 

  78. Van de Walle, C. G.; Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys.2004, 95, 3851–3879.

    CAS  Google Scholar 

  79. Wang, N.; West, D.; Liu, J. W.; Li, J.; Yan, Q. M.; Gu, B. L.; Zhang, S. B.; Duan, W. H. Microscopic origin of the p-type conductivity of the topological crystalline insulator SnTe and the effect of Pb alloying. Phys. Rev. B2014, 89, 045142.

    Google Scholar 

Download references

Acknowledgements

We thank Prof. X. F. Qian for helpful discussions, W. Yang and M. Hosek for experimental assistance. We are also grateful to Y. Zhao and Prof. D. Li for some preliminary thermal transport characterization efforts which prompted the authors to conduct more thorough analyses of the synthesized nanostructures. This work was supported, in part, by the Indiana University Vice Provost for Research through the Faculty Research Support Program, National Science Foundation Research Experience for Undergraduates grant PHY-1757646, NSF-DMR-1350002. We thank the Indiana University-Bloomington Nanoscale Characterization Facility (NCF) for the use of instruments (The XPS instrument at NCF was funded through grant NSF-DMR-1126394).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Li or Shixiong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xie, D., Li, Z. et al. Self-organization of various “phase-separated” nanostructures in a single chemical vapor deposition. Nano Res. 13, 1723–1732 (2020). https://doi.org/10.1007/s12274-020-2798-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2798-5

Keywords

Navigation