Skip to main content
Log in

Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Room temperature phosphorescence (RTP) materials show potential applications in information security and optoelectronic devices, but it is still a challenge to achieve RTP in organic materials under water ambient due to the unstable property of triplet states. Herein, water-induced RTP has been demonstrated in the organic microrod (OMR). Noting that the RTP intensity of the as-prepared OMR is greatly enhanced when water is introduced, and the reason for the enhancement can be attributed to the formation of hydrogen-bonded networks inside the OMR. The hydrogen-bonded networks can confine the molecular motion effectively, leading to the stability of triplet states; thus the lifetime of the OMR can reach 1.64 s after introducing water. By virtue of the long lifetime of the OMR in the presence of water, multilevel data encryption based on the OMR has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, K. H.; Lee, S.; Moon, C. K.; Kim, S. Y.; Park, Y. S.; Lee, J. H.; Woo Lee, J.; Huh, J.; You, Y.; Kim, J. J. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun.2014, 5, 4769.

    Article  CAS  Google Scholar 

  2. Xu, J. W.; Cui, Y.; Smith, G. M.; Li, P. Y.; Dun, C. C.; Shao, L. Q.; Guo, Y.; Wang, H. Z.; Chen, Y. H.; Carrol, D. L. Tailoring spin mixtures by ion-enhanced Maxwell magnetic coupling in color-tunable organic electroluminescent devices. Light: Sci. Appl.2018, 7, 46.

    Article  Google Scholar 

  3. Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M. A.; Chae, H. S.; Einzinger, M.; Ha, D. G.; Wu, T. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater.2016, 15, 1120–1127.

    Article  Google Scholar 

  4. Cai, S. Z.; Shi, H. F.; Li, J. W.; Gu, L.; Ni, Y.; Cheng, Z. C.; Wang, S.; Xiong, W. W.; Li, L.; An, Z. F. et al. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv. Mater.2017, 29, 1701244.

    Article  Google Scholar 

  5. Zhen, X.; Tao, Y.; An, Z. F.; Chen, P.; Xu, C. J.; Chen, R. F.; Huang, W.; Pu, K. Y. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater.2017, 29, 1606665.

    Article  Google Scholar 

  6. Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc.2013, 135, 14125–14133.

    Article  CAS  Google Scholar 

  7. Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater.2014, 13, 418–426.

    Article  CAS  Google Scholar 

  8. Li, Q. J.; Zhou, M.; Yang, M. Y.; Yang, Q. F.; Zhang, Z. X.; Shi, J. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun.2018, 9, 734.

    Article  Google Scholar 

  9. Wu, Q.; Ma, H. L.; Ling, K.; Gan, N.; Cheng, Z. C.; Gu, L.; Cai, S. Z.; An, Z. F.; Shi, H. F.; Huang, W. Reversible ultralong organic phosphorescence for visual and selective chloroform detection. ACS Appl. Mater. Interfaces2018, 10, 33730–33736.

    Article  CAS  Google Scholar 

  10. Tan, J.; Ye, Y. X.; Ren, X. D.; Zhao, W.; Yue, D. M. High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices. J. Mater. Chem. C2018, 6, 7890–7895.

    Article  CAS  Google Scholar 

  11. Tao, S. Y.; Lu, S. Y.; Geng, Y. J.; Zhu, S. J.; Redfern, S. A. T.; Song, Y. B.; Feng, T. L.; Xu, W. Q.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem., Int. Ed.2018, 57, 2393–2398.

    Article  CAS  Google Scholar 

  12. Tian, Z.; Li, D.; Ushakova, E. V.; Maslov, V. G.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Rogach, A. L. Multilevel data encryption using thermal-treatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites. Adv. Sci.2018, 5, 1800795.

    Article  Google Scholar 

  13. Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater.2018, 28, 1800791.

    Article  Google Scholar 

  14. Li, Q. J.; Zhou, M.; Yang, Q. F.; Wu, Q.; Shi, J.; Gong, A. H.; Yang, M. Y. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater.2016, 28, 8221–8227.

    Article  CAS  Google Scholar 

  15. Chen, H.; Yao, X. Y.; Ma, X.; Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater.2016, 4, 1397–1401.

    Article  CAS  Google Scholar 

  16. Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun.2013, 49, 5751–5753.

    Article  CAS  Google Scholar 

  17. Bai, L. Q.; Xue, N.; Zhao, Y. F.; Wang, X. R.; Lu, C.; Shi, W. Y. Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications. Nano Res.2018, 11, 2034–2045.

    Article  CAS  Google Scholar 

  18. Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed.2016, 55, 7231–7235.

    Article  CAS  Google Scholar 

  19. An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater.2015, 14, 685–690.

    Article  CAS  Google Scholar 

  20. Wang, B. L.; Yu, Y.; Zhang, H. Y.; Xuan, Y. Z.; Chen, G. R.; Ma, W. Y.; Li, J. Y.; Yu, J. H. Carbon dots in a matrix: Energy-transfer-enhanced room-temperature red phosphorescence. Angew. Chem., Int. Ed.2019, 58, 18443–18448.

    Article  CAS  Google Scholar 

  21. Liu, J. C.; Zhang, H. Y.; Wang, N.; Yu, Y.; Cui, Y. Z.; Li, J. Y.; Yu, J. H. Template-modulated afterglow of carbon dots in zeolites: Room-temperature phosphorescence and thermally activated delayed fluorescence. ACS Materials Lett.2019, 1, 58–63.

    Article  CAS  Google Scholar 

  22. Bian, L. F.; Shi, H. F.; Wang, X.; Ling, K.; Ma, H. L.; Li, M. P.; Cheng, Z. C.; Ma, C. Q.; Cai, S. Z.; Wu, Q. et al. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J. Am. Chem. Soc.2018, 140, 10734–10739.

    Article  CAS  Google Scholar 

  23. Wang, B. L.; Mu, Y.; Zhang, H. Y.; Shi, H. Z.; Chen, G. R.; Yu, Y.; Yang, Z. Q.; Li, J. Y.; Yu, J. H. Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks. ACS Cent. Sci.2019, 5, 349–356.

    Article  CAS  Google Scholar 

  24. Zhang, G. Q.; Chen, J. B.; Payne, S. J.; Kooi, S. E.; Demas, J. N.; Fraser, C. L. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc.2007, 129, 8942–8943.

    Article  CAS  Google Scholar 

  25. Pan, S. F.; Chen, Z. T.; Zheng, X. L.; Wu, D. H.; Chen, G. L.; Xu, J.; Feng, H.; Qian, Z. S. Ultralong room-temperature phosphorescence from supramolecular behavior via intermolecular electronic coupling in pure organic crystals. J. Phys. Chem. Lett.2018, 9, 3939–3945.

    Article  CAS  Google Scholar 

  26. Li, J. Y.; Wang, B. L.; Zhang, H. Y.; Yu, J. H. Carbon dots-in-matrix boosting intriguing luminescence properties and applications. Small2019, 15, 1805504.

    Article  Google Scholar 

  27. Lin, C. J.; Zhuang, Y. X.; Li, W. H.; Zhou, T. L.; Xie, R. J. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale2019, 11, 6584–6590.

    Article  CAS  Google Scholar 

  28. Dong, X. W.; Wei, L. M.; Su, Y. J.; Li, Z. L.; Geng, H. J.; Yang, C.; Zhang, Y. F. Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. J. Mater. Chem. C2015, 3, 2798–2801.

    Article  CAS  Google Scholar 

  29. Mieno, H.; Kabe, R.; Notsuka, N.; Allendorf, M. D.; Adachi, C. Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF-8. Adv. Opt. Mater.2016, 4, 1015–1021.

    Article  CAS  Google Scholar 

  30. Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem., Int. Ed.2014, 53, 11177–11181.

    Article  CAS  Google Scholar 

  31. Shi, W. Y.; Yao, J.; Bai, L. Q.; Lu, C. Defect-stabilized triplet state excitons: Toward ultralong organic room-temperature phosphorescence. Adv. Funct. Mater.2018, 28, 1804961.

    Article  Google Scholar 

  32. Tang, G. Q.; Zhang, K.; Feng, T. L.; Tao, S. Y.; Han, M.; Li, R.; Wang, C. C.; Wang, Y.; Yang, B. One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence. J. Mater. Chem. C2019, 7, 8680–8687.

    Article  CAS  Google Scholar 

  33. Chen, Z. Q.; Bian, Z. Q.; Huang, C. H. Functional IrIII complexes and their applications. Adv. Mater.2010, 22, 1534–1539.

    Article  CAS  Google Scholar 

  34. Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res.2017, 10, 3606–3617.

    Article  CAS  Google Scholar 

  35. Li, W.; Zhou, W.; Zhou, Z. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Lei, B. F.; Hu, C. F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem., Int. Ed.2019, 131, 7278–7283.

    Article  Google Scholar 

  36. Cheng, Z. C.; Shi, H. F.; Ma, H. L.; Bian, L. F.; Wu, Q.; Gu, L.; Cai, S. Z.; Wang, X.; Xiong, W. W.; An, Z. F. et al. Ultralong phosphorescence from organic ionic crystals under ambient conditions. Angew. Chem., Int. Ed.2018, 57, 678–682.

    Article  CAS  Google Scholar 

  37. Chai, Z. F.; Wang, C.; Wang, J. F.; Liu, F.; Xie, Y. J.; Zhang, Y. Z.; Li, J. R.; Li, Q. Q.; Li, Z. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: The relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chem. Sci.2017, 8, 8336–8344.

    Article  CAS  Google Scholar 

  38. Cuttell, D. G.; Kuang, S. M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A. Simple Cu(I) complexes with unprecedented excited-state lifetimes. J. Am. Chem. Soc.2002, 124, 6–7.

    Article  CAS  Google Scholar 

  39. Fateminia, S. M. A.; Mao, Z.; Xu, S. D.; Yang, Z. Y.; Chi, Z. G.; Liu, B. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew. Chem., Int. Ed.2017, 56, 12160–12164.

    Article  CAS  Google Scholar 

  40. Jiang, K.; Wang, Y. H.; Cai, C. Z.; Lin, H. W. Activating room temperature long afterglow of carbon dots via covalent fixation. Chem. Mater.2017, 29, 4866–487.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11904326, 21601159, 61604132, and 51602288), the National Science Fund for Distinguished Young Scholars (No. 61425021), and Key Science and Technology Project of Henan Province (No. 171100210600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-Kai Liu or Chong-Xin Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YC., Shang, Y., Liu, KK. et al. Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Res. 13, 875–881 (2020). https://doi.org/10.1007/s12274-020-2710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2710-3

Keywords

Navigation