Skip to main content
Log in

Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing efficient and low-cost electrocatalysts for oxygen evolution reaction (OER) with high electrochemical activity and durability for diverse renewable and sustainable energy technologies remains challenging. Herein, an ultrasonic-assisted and coordination modulation strategy is developed to construct sandwich-like metal-organic framework (MOF) derived hydroxide nanosheet (NS) arrays/graphene oxide (GO) composite via one-step self-transformation route. Inducing from unsteady state, the dodecahedral ZIF-67 with Co2+ in tetrahedral coordination auto-converts into defect-rich ultrathin layered hydroxides with the interlayered ion NO3-. The self-transforming a-Co(OH)2/GO nanosheet arrays from ZIF-67 (Co(OH)2-GNS) change the coordination mode of Co2+ and bring about the exposure of more metal active sites, thereby enhancing the spatial utilization ratio within the framework. As monometal-based electrocatalyst, the optimized Co(OH)2-GNS exhibits remarkable OER catalytic performance evidenced by a low overpotential of 259 mV to achieve a current density of 10 mA·cm-2 in alkaline medium, even exceeding commercial RuO2. During the oxygen evolution process, electron migration can be accelerated by the interfacial/in-plane charge polarization and local electric field, corroborated by the off-axis electron holography. Density functional theory (DFT) calculations further studied the collaboration between ultrathin Co(OH)2 NS and GO, which leads to lower energy barriers of intermediate products and greatly promotes electrocatalytic property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed.2017, 56, 610–614.

    Article  CAS  Google Scholar 

  2. Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater., in press, DOI: https://doi.org/10.1002/aenm.20190095.

  3. Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

    Article  CAS  Google Scholar 

  4. Ma, Y.; Chu, J. Y.; Li, Z. N.; Rakov, D.; Han, X. J.; Du, Y. C.; Song, B.; Xu, P. Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution. Small2018, 14, 1803783.

    Article  CAS  Google Scholar 

  5. Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front. 2019, 6, 687–693.

    Article  CAS  Google Scholar 

  6. Li, Y. Z.; Abbott, J.; Sun, Y. C.; Sun, J. M.; Du, Y. C.; Han, X. J.; Wu, G.; Xu, P. Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. Appl. Catal. B: Environ. 2019, 258, 117952.

    Article  CAS  Google Scholar 

  7. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science2008, 319, 939–943.

    Article  CAS  Google Scholar 

  8. Cao, F. F.; Zhao, M. T.; Yu, Y. F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X. H.; Lu, Q. P.; Zhang, X.; Zhang, Z. C. et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 2016, 138, 6924–6927.

    Article  CAS  Google Scholar 

  9. Hu, H.; Zhang, J. T.; Guan, B. Y.; Lou, X. W. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem., Int. Ed.2016, 55, 9514–9518.

    Article  CAS  Google Scholar 

  10. Peng, S.; Bie, B. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9, 1293.

    Article  CAS  Google Scholar 

  11. Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645–7649.

    Article  CAS  Google Scholar 

  12. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal- organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy2016, 1, 16184.

    Article  CAS  Google Scholar 

  13. Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

    Article  CAS  Google Scholar 

  14. Yang, J.; Zhang, F. Y.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed.2015, 54, 10889–10893.

    Article  CAS  Google Scholar 

  15. Li, Y. Z.; Niu S. Q.; Rakov, D.; Wang, Y.; Cabán-Acevedo, M.; Zheng, S. J.; Song, B.; Xu, P. Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale2018, 10, 7291–7297.

    Article  CAS  Google Scholar 

  16. Han, M. K.; Yin, X. W.; Li, X. L.; Anasori, B.; Zhang, L. T.; Cheng, L. F.; Gogotsi, Y. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces2017, 9, 20038–20045.

    Article  CAS  Google Scholar 

  17. Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A2014, 2, 13250–13258.

    Article  CAS  Google Scholar 

  18. Xu, C. Y.; Li, Q. H.; Shen, Q. L.; Yuan, Z.; Ning, J. Q.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. A facile sequential ion exchange strategy to synthesize CoSe2/FeSe2 double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. Nanoscale2019, 11, 10738–10745.

    Article  CAS  Google Scholar 

  19. Wu, J. J.; Zhang, D.; Wang, Y.; Wan, Y.; Hou, B. R. Catalytic activity of graphene-cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J. Power Sources2012, 198, 122–126.

    Article  CAS  Google Scholar 

  20. Wang, L.; Li, X.; Li, Q. Q.; Zhao, Y. H.; Che, R. C. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces2018, 10, 22602–22610.

    Article  CAS  Google Scholar 

  21. Liu, H. D.; Chen, Z. L.; Zhou, L.; Li, X.; Pei, K.; Zhang, J.; Song, Y.; Fang, F.; Che, R. C.; Sun, D. L. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium- sulfur batteries. J. Mater. Chem. A2019, 7, 7074–7081.

    Article  CAS  Google Scholar 

  22. Yao, Y.; Li, C.; Huo, Z. L.; Liu, M.; Zhu, C. X.; Gu, C. Z.; Duan, X. F.; Wang, Y. G.; Gu, L.; Yu, R. C. In situ electron holography study of charge distribution in high-κ charge-trapping memory. Nat. Commun. 2013, 4, 2764.

    Article  CAS  Google Scholar 

  23. Rau, W. D.; Schwander, P.; Baumann, F. H.; Höppner, W.; Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 1999, 82, 2614–2617.

    Article  CAS  Google Scholar 

  24. Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C. P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.

    Article  CAS  Google Scholar 

  25. Firmiano, E. G. S.; Cordeiro, M. A. L.; Rabelo, A. C.; Dalmaschio, C. J.; Pinheiro, A. N.; Pereira, E. C.; Leite, E. R. Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 2012, 48, 7687–7689.

    Article  CAS  Google Scholar 

  26. Hu, W. H.; Shang, X.; Han, G. Q.; Dong, B.; Liu, Y. R.; Li, X.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon2016, 100, 236–242.

    Article  CAS  Google Scholar 

  27. Sun, J. Q.; Yang, D. J.; Lowe, S.; Zhang, L. J.; Wang, Y. Z.; Zhao, S. L.; Liu, P. R.; Wang, Y.; Tang, Z. Y.; Zhao, H. J. et al. Sandwich-like reduced graphene oxide/carbon black/amorphous cobalt borate nano-composites as bifunctional cathode electrocatalyst in rechargeable zinc-air batteries. Adv. Energy Mater. 2018, 8, 1801495.

    Article  CAS  Google Scholar 

  28. Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano2018, 12, 8670–8677.

    Article  CAS  Google Scholar 

  29. Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed.2018, 57, 16166–16170.

    Article  CAS  Google Scholar 

  30. Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.

    Article  CAS  Google Scholar 

  31. Yang, J.; Yu, C.; Hu, C.; Wang, M.; Li, S. F.; Huang, H. W.; Bustillo, K.; Han, X. T.; Zhao, C. T.; Guo, W. et al. Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 2018, 28, 1803272.

    Article  CAS  Google Scholar 

  32. Pei, T.; Zhang, Z. Q.; Li, B. H.; Vinu, M.; Lin, C. H.; Lee, S. Raman observation of the “volcano curve” in the formation of carbonized metal-organic frameworks. J. Phys. Chem. C2017, 121, 22939–22947.

    Article  CAS  Google Scholar 

  33. Ye, F.; Song, Q.; Zhang, Z. C.; Li, W.; Zhang, S. Y.; Yin, X. W.; Zhou, Y. Z.; Tao, H. W.; Liu, Y. S.; Cheng, L. F. et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 2018, 28, 1707205.

    Article  CAS  Google Scholar 

  34. Liu, X. L.; Wu, J. J.; Huang, X. L.; Liu, Z. W.; Zhang, Y.; Wang, M.; Che, R. C. Predominant growth orientation of Li1.2(Mn0.4Co0.4)O2 cathode materials produced by the NaOH compound molten salt method and their enhanced electrochemical performance. J. Mater. Chem. A2014, 2, 15200–15208.

    Article  CAS  Google Scholar 

  35. Li, S. S.; Zhao, Y. H.; Liu, Z. W.; Yang, L. T.; Zhang, J.; Wang, M.; Che, R. C. Flexible graphene-wrapped carbon nanotube/graphene@ MnO2 3D multilevel porous film for high-performance lithium-ion batteries. Small2018, 14, 1801007.

    Article  CAS  Google Scholar 

  36. Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.

    Article  CAS  Google Scholar 

  37. Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/ electrocatalytic activity towards overall water splitting. Mater. Chem. Front. 2019, 3, 520–531.

    Article  CAS  Google Scholar 

  38. Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605–1611.

    CAS  Google Scholar 

  39. Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.

    Article  CAS  Google Scholar 

  40. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

    Article  CAS  Google Scholar 

  41. Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

    Article  CAS  Google Scholar 

  42. Bao, J.; Wang, Z. L.; Xie, J. F.; Xu, L.; Lei, F. C.; Guan, M. L.; Huang, Y. P.; Zhao, Y.; Xia, J. X.; Li, H. M. The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting. Inorg. Chem. Front. 2018, 5, 2964–2970.

    Article  CAS  Google Scholar 

  43. Zou, H. Y.; He, B. W.; Kuang, P. Y.; Yu, J. G.; Fan, K. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces2018, 10, 22311–22319.

    Article  CAS  Google Scholar 

  44. Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A2017, 5, 12322–12329.

    Article  CAS  Google Scholar 

  45. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    Article  CAS  Google Scholar 

  46. Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed.2016, 55, 3694–3698.

    Article  CAS  Google Scholar 

  47. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem2011, 3, 1159–1165.

    Article  CAS  Google Scholar 

  48. Jin, H. Y.; Mao, S. J.; Zhan, G. P.; Xu, F.; Bao, X. B.; Wang, Y. Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reaction. J. Mater. Chem. A2017, 5, 1078–1084.

    Article  CAS  Google Scholar 

  49. Jiao, W. L.; Chen, C.; You, W. B.; Zhang, J.; Liu, J. W.; Che, R. C. Yolk-shell Fe/Fe4N@Pd/C magnetic nanocomposite as an efficient recyclable ORR electrocatalyst and SERS substrate. Small2019, 15, 1805032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2018YFA209102) and the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050, and 61790581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchao Che.

Electronic Supplementary Material

12274_2020_2701_MOESM1_ESM.pdf

Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwich-like structure for efficient electrocatalytic oxygen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Liu, W., Wang, L. et al. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 13, 810–817 (2020). https://doi.org/10.1007/s12274-020-2701-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2701-4

Keywords

Navigation