Skip to main content
Log in

Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-coated mesoporous Co9S8 nanoparticles supported on reduced graphene oxide (rGO) are successfully synthesized by a simple process. This composite makes full use of the protection of the carbon layer on the surface, the good conductivity and three-dimensional (3D) structure of rGO, the mesoporous structure and nanoscale size of Co9S8, thereby presenting the excellent electrochemical performances in potassium-ion batteries, 407.9 mAh·g−1 after 100 cycles at 0.2 A·g−1 and 215.1 mAh·g−1 at 5 A·g−1 in rate performances. After 1,200 cycles at 1.0 A·g−1, this composite still remains a capacity of 210.8 mAh·g−1. The redox reactions for potassium storage are revealed by ex-situ transmission electron microscope (TEM)/high-resolution TEM (HRTEM) images, selected area electron diffraction (SAED) patterns and X-ray photoelectron spectroscopy (XPS) spectra. The application of this composite as the host of sulfur for Li-S batteries is also explored. It sustains a capacity of 431.8 mAh·g−1 after 800 cycles at 3 C, leading to a degradation of 0.052% per cycle. These results confirm the wide applications of this composite for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, G. Y.; Li, C. J.; Liu, F.; Majeed, M. K.; Feng, Z. Y.; Cui, Y. H.; Yang, J.; Qian, Y. T. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy2018, 10, 241–248.

    Google Scholar 

  2. Xiong, P. X.; Bai, P. X.; Tu, S. B.; Cheng, M. R.; Zhang, J. F.; Sun, J.; Xu, Y. H. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small2018, 14, 1802140.

    Google Scholar 

  3. Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res.2019, 12, 1025–1031.

    CAS  Google Scholar 

  4. Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Qin, J. Q.; Wang, S.; Shi, X. Y.; Bao, X. H. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano2017, 11, 4792–4800.

    CAS  Google Scholar 

  5. Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a longlife host material for potassium ion intercalation. Nano Res.2017, 10, 1313–1321.

    CAS  Google Scholar 

  6. Xiao, N.; Zhang, X. Y.; Liu, C.; Wang, Y. W.; Li, H. Q.; Qiu, J. S. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon2019, 147, 574–581.

    CAS  Google Scholar 

  7. Wang, L. F.; Li, S. J.; Li, J. L.; Yan, S.; Zhang, X. Y.; Wei, D. H.; Xing, Z.; Zhuang, Q. C.; Ju, Z. C. Nitrogen/sulphur co-doped porous carbon derived from wasted wet wipes as promising anode material for high performance capacitive potassium-ion storage. Mater. Today Energy2019, 13, 195–204.

    Google Scholar 

  8. Zhong, Y.; Xia, X. H.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, X. L.; Zhang, Q.; Tu, J. P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries. Adv. Energy Mater.2018, 8, 1701110.

    Google Scholar 

  9. Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci.2019, 12, 615–623.

    CAS  Google Scholar 

  10. He, X. D.; Liu, Z. H.; Liao, J. Y.; Ding, X.; Hu, Q.; Xiao, L. N.; Wang, S.; Chen, C. H. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. A2019, 7, 9629–9637.

    CAS  Google Scholar 

  11. Lu, Y. Y.; Chen, J. Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance. Sci. China Chem.2017, 60, 1533–1539.

    CAS  Google Scholar 

  12. Yi, Z.; Qian, Y.; Tian, J.; Shen, K. Z.; Lin, N.; Qian, Y. T. Self-templating growth of Sb2Se3@C microtube: A convention-alloying-type anode material for enhanced K-ion batteries. J. Mater. Chem. A2019, 7, 12283–12291.

    CAS  Google Scholar 

  13. Yu, Q. Y.; Jiang, B.; Hu, J.; Lao, C. Y.; Gao, Y. Z.; Li, P. H.; Liu, Z. W.; Suo, G. Q.; He, D. L.; Wang, W. A. et al. Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries. Adv. Sci.2018, 5, 1800782.

    Google Scholar 

  14. Seo, S. D.; Park, D.; Park, S.; Kim, D. W. “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium-sulfur batteries. Adv. Funct. Mater.2019, 29, 1903712.

    Google Scholar 

  15. Gan, Q. M.; Xie, J. W.; Zhu, Y. H.; Zhang, F. C.; Zhang, P. S.; He, Z.; Liu, S. Q. Sub-20 nm carbon nanoparticles with expanded interlayer spacing for high-performance potassium storage. ACS Appl. Mater. Interfaces2019, 11, 930–939.

    CAS  Google Scholar 

  16. Ding, J.; Zhang, H. L.; Zhou, H.; Feng, J.; Zheng, X. R.; Zhong, C.; Paek, E.; Hu, W. B.; Mitlin, D. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater.2019, 31, 1900429.

    Google Scholar 

  17. Han, C. H.; Han, K.; Wang, X. P.; Wang, C. Y.; Li, Q.; Meng, J. S.; Xu, X. M.; He, Q. M.; Luo, W.; Wu, L. M. et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale2018, 10, 6820–6826.

    CAS  Google Scholar 

  18. Yi, Z.; Lin, N.; Li, T. Q.; Han, Y.; Li, Y.; Qian, Y. T. Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage. Nano Res.2019, 12, 1824–1830.

    CAS  Google Scholar 

  19. Sun, S. X.; Luo, J. H.; Qian, Y.; Jin, Y.; Liu, Y.; Qiu, Y. G.; Li, X.; Fang, C.; Han, J. T.; Huang, Y. H. Metal-organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors. Adv. Energy Mater.2018, 8, 1801080.

    Google Scholar 

  20. Jiao, Y. C.; Mukhopadhyay, A.; Ma, Y.; Yang, L.; Hafez, A. M.; Zhu, H. L. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv. Energy Mater.2018, 8, 1702779.

    Google Scholar 

  21. Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res.2018, 11, 4614–4626.

    CAS  Google Scholar 

  22. Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano2017, 11, 12658- 12667.

    CAS  Google Scholar 

  23. Chen, C. M.; Yang, Y. C.; Tang, X.; Qiu, R. H.; Wang, S. Y.; Cao, G. Z.; Zhang, M. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small2019, 15, 1804740.

    Google Scholar 

  24. Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. C.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@C structure on graphene matrix. Adv. Energy Mater.2018, 8, 1802565.

    Google Scholar 

  25. Lin, H. Z.; Li, M. L.; Yang, X.; Yu, D. X.; Zeng, Y.; Wang, C. Z.; Chen, G.; Du, F. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater.2019, 9, 1900323.

    Google Scholar 

  26. Miao, W. F.; Zhang, Y.; Li, H. T.; Zhang, Z. H.; Li, L.; Yu, Z.; Zhang, W. M. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J. Mater. Chem. A2019, 7, 5504–5512.

    CAS  Google Scholar 

  27. Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T. E.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater.2019, 9, 1901872.

    Google Scholar 

  28. Luo, S. Q.; Zheng, C. M.; Sun, W. W.; Wang, Y. Q.; Ke, J. H.; Guo, Q. P.; Liu, S. K.; Hong, X. B.; Li, Y. J.; Xie, W. Multi-functional CoS2-N-C porous carbon composite derived from metal-organic frameworks for high performance lithium-sulfur batteries. Electrochim. Acta2018, 289, 94–103.

    CAS  Google Scholar 

  29. Ma, G. Y.; Huang, K. S.; Ma, J. S.; Ju, Z. C.; Xing, Z.; Zhuang, Q. C. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A2017, 5, 7854–7861.

    CAS  Google Scholar 

  30. Liu, X. D.; Liu, H. T.; Zhao, Y. M.; Dong, Y. Z.; Fan, Q. H.; Kuang, Q. Synthesis of the Carbon-coated nanoparticle Co9S8 and its electrochemical performance as an anode material for sodium-ion batteries. Langmuir2016, 32, 12593–12602.

    CAS  Google Scholar 

  31. Wang, C. D.; Xie, H.; Chen, S. M.; Ge, B. H.; Liu, D. B.; Wu, C. Q.; Xu, W. J.; Chu, W. S.; Babu, G.; Ajayan, P. M. et al. Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater.2018, 30, 1802525.

    Google Scholar 

  32. Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/mxene hybrid nanosheets for superior potassium storage. ACS Nano2019, 13, 3448–3456.

    CAS  Google Scholar 

  33. He, Y. Y.; Wang, L.; Dong, C. F.; Li, C. C.; Ding, X. Y.; Qian, Y. T.; Xu, L. Q. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater.2019, 23, 35–45.

    Google Scholar 

  34. Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater.2017, 27, 1702634.

    Google Scholar 

  35. Chen, Z.; Yin, D. G.; Zhang, M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small2018, 14, 1703818.

    Google Scholar 

  36. Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater.2018, 30, 1800036.

    Google Scholar 

  37. Yao, Q. Q.; Zhang, J. S.; Li, J. X.; Huang, W. J.; Hou, K.; Zhao, Y.; Guan, L. H. Yolk-shell NiSx@C nanosheets as K-ion battery anodes with high rate capability and ultralong cycle life. J. Mater. Chem. A2019, 7, 18932–18939.

    CAS  Google Scholar 

  38. Zhou, J.; Zhao, H. Y.; Zhang, Q. L.; Li, T. Q.; Li, Y.; Lin, N.; Qian, Y. T. Carbon nanotube-stabilized Co9S8 dual-shell hollow spheres for high-performance K-ion storage. Chem. Commun.2019, 55, 1406–1409.

    CAS  Google Scholar 

  39. Mao, M. L.; Cui, C. Y.; Wu, M. G.; Zhang, M.; Gao, T.; Fan, X. L.; Chen, J.; Wang, T. H.; Ma, J. M.; Wang, C. S. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy2018, 45, 346–352.

    CAS  Google Scholar 

  40. Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater.2018, 30, 1801812.

    Google Scholar 

  41. Fang, L. Z.; Xu, J.; Sun, S.; Lin, B. W.; Guo, Q. B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small2019, 15, 1804806.

    Google Scholar 

  42. Zhang, D. M.; Jia, J. H.; Yang, C. C.; Jiang, Q. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Mater.2020, 24, 439–449.

    Google Scholar 

  43. Xu, X. J.; Liu, J.; Liu, J. W.; Ouyang, L. Z.; Hu, R. Z.; Wang, H.; Yang, L. C.; Zhu, M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater.2018, 28, 1707573.

    Google Scholar 

  44. Li, Z. L.; Xiao, Z. B.; Wang, S. Q.; Cheng, Z. B.; Li, P. Y.; Wang, R. H. Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv. Funct. Mater.2019, 29, 1902322.

    Google Scholar 

  45. Shang, C. Q.; Cao, L. J.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Zhou, G. F.; Wang, X.; Lu, Z. G. Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Mater.2019, 18, 375–381.

    Google Scholar 

  46. Chen, L.; Yang, W. W.; Liu, J. G.; Zhou, Y. Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries. Nano Res.2019, 12, 2743–2748.

    CAS  Google Scholar 

Download references

Acknowledgments

Thank the financial support from Science, Technology and Innovation Commission of ShenZhen Municipality (No. JCYJ20180305164424922), Fundamental Research Funds of Shandong University (No. 2018JC023), the National Nature Science Foundation of China (Nos. 61527809, 21471090, and 21971146), Taishan Scholarship in Shandong Provinces (No. ts201511004), and Development Programs of Shandong Province (Nos. 2017GGX40101 and 2017CXGC0503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Electronic Supplementary Material

12274_2020_2699_MOESM1_ESM.pdf

Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Xu, X., Feng, Z. et al. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 13, 802–809 (2020). https://doi.org/10.1007/s12274-020-2699-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2699-7

Keywords

Navigation