Skip to main content
Log in

Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A C/Ni composite was prepared via thermal decomposition of a nickel oleate complex at 700 °C, yielding disperse Ni nanocrystals with an average size of 20 nm, encapsulated by carbon nanosheets as deduced from transmission electron microscopy (TEM) images and confirmed from X-ray photoelectron spectroscopy (XPS). Furthermore, the X-ray diffraction pattern revealed a good ordering of the carbon layers, forced by the Ni encapsulation to adopt a bending structure. Considering the close interaction between the graphitized framework and the metallic nanoparticles we have studied the properties of the composite as an anode for Li-ion batteries. Compared with other nanostructured synthetic carbons, this carbon composite has a low voltage hysteresis and a modest irreversible capacity value, properties that play a significant role in its behaviour as electrodes in full cell configuration. At moderate rate values, 0.25 C, the electrode delivers an average capacity value around 723 mAh·g−1 on cycling, among the highest values so far reported for this carbon type. At higher rate values, 1 C, the average capacity values delivered by the cell on cycling decrease, around 205 mAh·g−1, but it maintains good capacity retention, a coulombic efficiency close to 100% after the first cycles and recovery of the capacity values when the rate is restored from 3 to 0.1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weller, H. Colloidal Semiconductor Q-Particles: Chemistry in the transition region between solid state and molecules. Angew. Chem., Int. Ed.1993, 32, 41–53.

    Google Scholar 

  2. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science1996, 271, 933–937.

    CAS  Google Scholar 

  3. Tao, Y. S.; Kanoh, H.; Abrams, L.; Kaneko, K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chem. Rev.2006, 106, 896–910.

    CAS  Google Scholar 

  4. Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun.2003, 927–934.

  5. Lewis, E.; Haigh, S.; O’Brien, P. The synthesis of metallic and semiconducting nanoparticles from reactive melts of precursors. J. Mater. Chem. A2014, 2, 570–580.

    CAS  Google Scholar 

  6. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater.2004, 3, 891–895.

    CAS  Google Scholar 

  7. Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater.2004, 16, 3931–3935.

    CAS  Google Scholar 

  8. Kim, Y. H.; Kang, Y. S.; Lee, W. J.; Jo, B. G.; Jeong, J. H. Synthesis of Cu nanoparticles prepared by using thermal decomposition of Cu-oleate complex. Mol. Cryst. Liq. Cryst.2006, 445, 231/[521]–238/[528].

    Google Scholar 

  9. Bao, N. Z.; Shen, L. M.; Wang, Y.; Padhan, P.; Gupta, A. A Facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 2007, 129, 12374–12375.

    CAS  Google Scholar 

  10. Kim, S. G.; Terashi, Y.; Purwanto, A.; Okuyama, K. Synthesis and film deposition of Ni nanoparticles for base metal electrode applications. Colloid. Surf. A Physicochem. Eng. Asp.2009, 337, 96–101.

    CAS  Google Scholar 

  11. Xiao, Q. F.; Sohn, H.; Chen, Z.; Toso, D.; Mechlenburg, M.; Zhou, Z. H.; Poirier, E.; Dailly, A.; Wang, H. Q.; Wu, Z. B. et al. Mesoporous metal and metal alloy particles synthesized by aerosol-assisted confined growth of nanocrystals. Angew. Chem., Int. Ed.2012, 51, 10546–10550.

    CAS  Google Scholar 

  12. Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun.2015, 6, 6420.

    CAS  Google Scholar 

  13. Buck, M. R.; Biacchi, A. J.; Schaak, R. E. Insights into the thermal decomposition of Co(II) oleate for the shape-controlled synthesis of Wurtzite-type CoO nanocrystals. Chem. Mater.2014, 26, 1492–1499.

    CAS  Google Scholar 

  14. Bau, J. A.; Li, P.; Marenco, A. J.; Trudel, S.; Olsen, B. C.; Luber, E. J.; Buriak, J. M. Nickel/Iron oxide nanocrystals with a nonequilibrium phase: Controlling size, shape, and composition. Chem. Mater.2014, 16, 4796–4804.

    Google Scholar 

  15. Behera, B. C.; Ravindra, A. V.; Padhan, P. Structural phase transformation of nickel nanostructures with synthetic approach conditions. J. Appl. Phys.2014, 115, 17B510.

    Google Scholar 

  16. Jiao, Y. C.; Han, D. D.; Liu, L. M.; Ji, L.; Guo, G N.; Hu, J. H.; Yang, D.; Dong, A. G. Highly ordered mesoporous few-layer graphene frameworks enabled by Fe3O4 nanocrystal superlattices. Angew. Chem., Int. Ed.2015, 54, 5727–5731.

    CAS  Google Scholar 

  17. Yu, H. J.; Li, H. W.; Yuan, S. Y.; Yang, Y. C.; Zheng, J. H.; Hu, J. H.; Yang, D.; Wang, Y. G.; Dong, A. G. Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Res.2017, 10, 2495–2507.

    CAS  Google Scholar 

  18. Han, D. D.; Jiao, Y. C.; Han, W. Q.; Wu, G. H.; Li, T. T.; Yang, D.; Dong, A. G. A molecular-based approach for the direct synthesis of highly-ordered, homogeneously-doped mesoporous carbon frameworks. Carbon2018, 140, 265–275.

    CAS  Google Scholar 

  19. Xu, S. H.; Zhang, F. Y.; Kang, Q.; Liu, S. H.; Cai, Q. Y. The effect of magnetic field on the catalytic graphitization of phenolic resin in the presence of Fe–Ni. Carbon2009, 47, 3233–3237.

    CAS  Google Scholar 

  20. Long, D. H.; Li, W.; Qiao, W. M.; Miyawaki, J.; Yoon, S. H.; Mochida, I.; Ling, L. C. Graphitization behaviour of chemically derived graphene sheets. Nanoscale2011, 3, 3652–3656.

    CAS  Google Scholar 

  21. Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C2010, 114, 12800–12804.

    CAS  Google Scholar 

  22. Vargas, Ó.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full li-ion batteries. ACS Appl. Mater. Interfaces2014, 6, 3290–3298.

    CAS  Google Scholar 

  23. Bokobza, L.; Bruneel, J. L.; Couzi, M. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vibrat. Spectros.2014, 74, 57–63.

    CAS  Google Scholar 

  24. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett.2006, 97, 187401.

    CAS  Google Scholar 

  25. Courtel, F. M.; Niketic, S.; Duguay, D.; Abu-Lebdeh, Davidson, I. J. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J. Power Sources2011, 196, 2128–2134.

    CAS  Google Scholar 

  26. Ding, F.; Xu, W.; Choi, D.; Wang, W.; Li, X. L.; Engelhard, M. H.; Chen, X. L.; Yang, Z. G.; Zhang, J. G. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. J. Mater. Chem.2012, 22, 12745–12751.

    CAS  Google Scholar 

  27. Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res.2015, 8, 2998–3010.

    CAS  Google Scholar 

  28. Yao, J.; Wang, G. X.; Ahn, J. H.; Liu, H. K.; Dou, S. X. Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells. J. Power Sources2003, 114, 292–297.

    CAS  Google Scholar 

  29. Hasa, I.; Hassoun, J.; Passerini, S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Res.2017, 10, 3942–3969.

    CAS  Google Scholar 

  30. Gao, M. Y.; Liu, N. Q.; Chen, Y. L.; Guan, Y. P.; Wang, W. K.; Zhang, H.; Wang, F.; Huang, Y. Q. An in situ self-developed graphite as high capacity anode of Lithium-ion Batteries. Chem. Commun.2015, 51, 12118–12121.

    CAS  Google Scholar 

  31. Carbone, L.; Coneglian, T.; Gobet, M.; Munoz, S.; Devany, M.; Greenbaum, S.; Hassoun, J. A simple approach for making a viable, safe, and high-performances lithium sulfur battery. J. Power Sources2018, 377, 26–35.

    CAS  Google Scholar 

  32. Luna-Lama, F.; Hernández-Rentero, C.; Caballero, A.; Morales, J. Biomass-derived carbon/γ-MnO2 nanorods/S composites prepared by facile procedures with improved performance for Li/S batteries. Electrochim. Acta2018, 292, 522–531.

    CAS  Google Scholar 

  33. Peled, E.; Menkin, S. Review-SEI: Past, present and future. J. Electrochem. Soc.2017, 164, A1703–A1719.

    CAS  Google Scholar 

  34. Zhang, S. S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc.2012, 159, A920–A923.

    CAS  Google Scholar 

  35. Wang, L.; Zhao, J. S.; He, X. M.; Ren, J. G.; Zhao, H. P.; Gao, J.; Li, J. J.; Wan, C. R.; Jiang, C. Y. Investigation of modified nature graphite anodes by electrochemical impedance spectroscopy. Int. J. Electrochem. Sci.2012, 7, 554–560.

    CAS  Google Scholar 

  36. Guo, P.; Song, H. H.; Chen, X. H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun.2009, 11, 1320–1324.

    CAS  Google Scholar 

  37. Yi, J.; Li, X. P.; Hu, S. J.; Li, W. S.; Zhou, L.; Xu, M. Q.; Lei, J. F.; Hao, L. S. Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. J. Power Sources2011, 196, 6670–6675.

    CAS  Google Scholar 

  38. Li, G. D.; Xu, L. Q.; Hao, Q.; Wang, M.; Qian, Y. T. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. RSC Adv.2012, 2, 284–291.

    CAS  Google Scholar 

  39. Ng, S. H.; Wang, J.; Guo, Z. P.; Chen, J.; Wang, G. X.; Liu, H. K. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta2005, 51, 23–28.

    CAS  Google Scholar 

  40. Xue, J. S.; Dahn, J. R. Dramatic effect of oxidation on lithium insertion in carbons made from epoxy resins. J. Electrochem. Soc.1995, 142, 3668–3677.

    CAS  Google Scholar 

  41. Buiel, E.; Dahn, J. R. Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion Batteries. J. Electrochem, Soc.1998, 145, 1977–1981.

    CAS  Google Scholar 

  42. Hu, Y. S.; Adelhelm, P.; Smarsly, B. M.; Hore, S.; Antonietti, M.; Maier, J. Synthesis of hierarchically porous carbon monoliths with highly ordered-microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv. Funct. Mater.2007, 17, 1873–1878.

    CAS  Google Scholar 

  43. Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J.; Olivares-Marín, M.; Gómez-Serrano, V. Improving the performance of biomass-derived carbons in Li-ion batteries by controlling the lithium insertion process. J. Electrochem. Soc.2010, 157, A791–A797.

    CAS  Google Scholar 

  44. Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J. Graphitized carbons of variable morphology and crystallinity: A comparative study of their performance in lithium cells. J. Electrochem. Soc.2009, 156, A986–A992.

    CAS  Google Scholar 

  45. Cai, X. Y.; Lai, L. F.; Shen, Z. X.; Lin, J. Y. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J. Mater. Chem. A2017, 5, 15423–15446.

    CAS  Google Scholar 

  46. Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci.2009, 2, 638–654.

    CAS  Google Scholar 

  47. Xiao, J. P.; Yao, M. G.; Zhu, K.; Zhang, D.; Zhao, S. J.; Lu, S. C.; Liu, B.; Cui, W.; Liu, B. B. Facile synthesis of hydrogenated carbon nanospheres with a graphite-like ordered carbon structure. Nanoscale2013, 5, 11306–11312.

    CAS  Google Scholar 

  48. Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q.; Maier, J.; Müllen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater.2010, 22, 838–842.

    CAS  Google Scholar 

  49. Han, F. D.; Bai, Y. J.; Liu, R.; Yao, B.; Qi, Y. X.; Lun, N.; Zhang, J. X. Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries. Adv. Energy Mater.2011, 1, 798–801.

    CAS  Google Scholar 

  50. Vargas C, O. A.; Caballero, A.; Morales, J. Can the performance of graphenenanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale2012, 4, 2083–2092.

    Google Scholar 

  51. Cheng, Q.; Okamoto, Y.; Tamura, N.; Tsuji, M.; Maruyama, S.; Matsuo, Y. Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Sci. Rep.2017, 7, 14782.

    Google Scholar 

Download references

Acknowledgements

This research was funded by Ministerio de Economía y Competitividad (No. MAT2017-87541-R) and Junta de Andalucía (Group FQM-175). F. J. S. gratefully acknowledges UCO for fellowship “Universidad de Córdoba. Becas Semillero de Investigación”. E. R. C. thanks to project RTI2018-099668-BC22 of Ministerio de Ciencia, Innovación y Universidades, and project UMA18-FEDERJA-126 of Junta de Andalucía and FEDER funds. J. C. V. also acknowledges financial Support from UCLM through the 2019-GRIN-27165 grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alvaro Caballero or Julián Morales.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soler-Piña, F.J., Hernández-Rentero, C., Caballero, A. et al. Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries. Nano Res. 13, 86–94 (2020). https://doi.org/10.1007/s12274-019-2576-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2576-4

Keywords

Navigation