Skip to main content
Log in

Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Current therapeutic limitations existed in effective treatment of rheumatoid arthritis (RA) have motivated numerous researches on finding new strategies. Regarding to the non-targeted distribution and uncontrollable in vivo performance which hinder the effective treatment for RA, we designed an acid-responsive polymeric micelle formulation by attaching the dexamethasone (Dex) to the side chains of a wheat-like polyethylene glycol (PEG) derivate via a hydrazone linker. The self-assembly micelles with the diameter around 50 nm could passively migrate to inflamed sites. The presence of hydrazone linkers avoided the drug leakage in circulation and ensured the preferential release in acidic arthritic joints. Here, we evaluated how the polymer-drug micelles with different density of drug payloads influenced the release pattern, pharmacokinetics and biodistribution, as well as the most importantly, the duration of the therapeutic efficacy. Our exploration would offer the chemical and structural basis for designing and optimizing the nanocarriers for enhanced therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smolen, J. S.; Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2003, 2, 473–488.

    Article  Google Scholar 

  2. van Vollenhoven, R. F. Treatment of rheumatoid arthritis: State of the art 2009. Nat. Rev. Rheumatol. 2009, 5, 531–541.

    Article  Google Scholar 

  3. Yuan, F.; Quan, L. D.; Cui, L.; Goldring, S. R.; Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012, 64, 1205–1219.

    Article  Google Scholar 

  4. Wang, Q.; Sun, X. Recent advances in nanomedicines for the treatment of Rheumatoid arthritis. Biomater. Sci. 2017, 5, 1407–1420.

    Article  Google Scholar 

  5. Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother. 2016, 80, 30–41.

    Article  Google Scholar 

  6. Tarner, I. H.; Müller-Ladner, U. Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin. Drug Deliv. 2008, 5, 1027–1037.

    Article  Google Scholar 

  7. Prasad, L. K.; O'Mary, H.; Cui, Z. R. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine 2015, 10, 2063–2074.

    Article  Google Scholar 

  8. Koenders, M. I.; van den Berg, W. B. Novel therapeutic targets in rheumatoid arthritis. Trends. Pharmacol. Sci. 2015, 36, 189–195.

    Article  Google Scholar 

  9. Buch, M. H.; Bingham, S. J.; Bryer, D.; Emery, P. Long-term infliximab treatment in rheumatoid arthritis: Subsequent outcome of initial responders. Rheumatology (Oxford) 2007, 46, 1153–1156.

    Article  Google Scholar 

  10. Chaudhari, K.; Rizvi, S.; Syed, B. A. Rheumatoid arthritis: Current and future trends. Nat. Rev. Drug Discov. 2016, 15, 305–306.

    Article  Google Scholar 

  11. Yang, M. D.; Feng, X. R.; Ding, J. X.; Chang, F.; Chen, X. S. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 2017, 252, 108–124.

    Article  Google Scholar 

  12. Ferrari, M.; Onuoha, S. C.; Pitzalis, C. Trojan horses and guided missiles: Targeted therapies in the war on arthritis. Nat. Rev. Rheumatol. 2015, 11, 328–337.

    Article  Google Scholar 

  13. Wang, D.; Goldring, S. R. The bone, the joints and the balm of Gilead. Mol. Pharm. 2011, 8, 991–993.

    Article  Google Scholar 

  14. Wang, Q.; Jiang, J. Y.; Chen, W. F.; Jiang, H.; Zhang, Z. R.; Sun, X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J. Control. Release 2016, 230, 64–72.

    Article  Google Scholar 

  15. Quan, L. D.; Zhang, Y. J.; Crielaard, B. J.; Dusad, A.; Lele, S. M.; Rijcken, C. J. F.; Metselaar, J. M.; Kostková, H.; Etrych, T.; Ulbrich, K. et al. Nanomedicines for inflammatory arthritis: Head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano 2013, 8, 458–466.

    Article  Google Scholar 

  16. Kim, S.; Shi, Y. Z.; Kim, J. Y.; Park, K.; Cheng, J. X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin. Drug Deliv. 2010, 7, 49–62.

    Article  Google Scholar 

  17. Wang, D.; Miller, S. C.; Liu, X. M.; Anderson, B.; Wang, X. S.; Goldring, S. R. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 2007, 9, R2.

    Article  Google Scholar 

  18. Liu, X. M.; Quan, L. D.; Tian, J.; Alnouti, Y.; Fu, K.; Thiele, G. M.; Wang, D. Synthesis and evaluation of a well-defined HPMA copolymerdexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharm. Res. 2008, 25, 2910–2919.

    Article  Google Scholar 

  19. Hrubý, M.; Konák, C.; Ulbrich, K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control. Release 2005, 103, 137–148.

    Article  Google Scholar 

  20. Li, C. H.; Li, H. M.; Wang, Q.; Zhou, M. L.; Li, M.; Gong, T.; Zhang, Z. R.; Sun, X. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Control. Release 2017, 246, 133–141.

    Article  Google Scholar 

  21. Quan, L. D.; Yuan, F.; Liu, X. M.; Huang, J. G.; Alnouti, Y.; Wang, D. Pharmacokinetic and biodistribution studies of N-(2-Hydroxypropyl)methacrylamide copolymer-dexamethasone conjugates in adjuvant-induced arthritis rat model. Mol. Pharm. 2010, 7, 1041–1049.

    Article  Google Scholar 

  22. Hegen, M.; Keith, J. C. Jr.; Collins, M.; Nickerson-Nutter, C. L. Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 1505–1515.

    Article  Google Scholar 

  23. Dell’Antonio, G.; Quattrini, A.; Dal Cin, E.; Fulgenzi, A.; Ferrero, M. E. Antinociceptive effect of a new P2Z/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci. Lett. 2002, 327, 87–90.

    Article  Google Scholar 

  24. Crielaard, B. J.; Rijcken, C. J. F.; Quan, L. D.; van der Wal, S.; Altintas, I.; van der Pot, M.; Kruijtzer, J. A. W.; Liskamp, R. M. J.; Schiffelers, R. M.; van Nostrum, C. F. et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew. Chem., Int. Ed. 2012, 51, 7254–7258.

    Article  Google Scholar 

  25. Metselaar, J. M.; van den Berg, W. B.; Holthuysen, A. E. M.; Wauben, M. H. M.; Storm, G.; van Lent, P. L. E. M. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis. 2004, 63, 348–353.

    Article  Google Scholar 

  26. Gasparyan, A. Y.; Stavropoulos-Kalinoglou, A.; Mikhailidis, D. P.; Douglas, K. M. J.; Kitas, G. D. Platelet function in rheumatoid arthritis: Arthritic and cardiovascular implications. Rheumatol. Int. 2011, 31, 153–164.

    Article  Google Scholar 

  27. Knijff-Dutmer, E. A. J.; Koerts, J.; Nieuwland, R.; Kalsbeek-Batenburg, E. M.; van de Laar, M. A. F. J. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 2002, 46, 1498–1503.

    Article  Google Scholar 

  28. Jeyachandran, Y. L.; Mielczarski, E.; Rai, B.; Mielczarski, J. A. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir. 2009, 25, 11614–11620.

    Article  Google Scholar 

  29. Metselaar, J. M.; Wauben, M. H. M.; Wagenaar-Hilbers, J. P. A.; Boerman, O. C.; Storm, G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum. 2003, 48, 2059–2066.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (No. 81673362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, Y., Chen, X. et al. Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Res. 12, 421–428 (2019). https://doi.org/10.1007/s12274-018-2233-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2233-3

Keywords

Navigation