Skip to main content
Log in

Biomedical applications of magneto-responsive scaffolds

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stimuli-responsive biomaterials, capable of responding on-demand to changes in their local environment, have become a subject of interest in the field of regenerative medicine. Magneto-responsive biomaterials, which can be manipulated spatiotemporally via an external magnetic field, have emerged as promising candidates as active scaffolds for advanced drug delivery and tissue regeneration applications. These specialized biomaterials can be synthesized by physically and/or chemically incorporating magnetic nanoparticles into the biomaterial structure. However, despite their promising impact on the future of regenerative medicine, magneto-responsive biomaterials still have several limitations that need to be overcome before they can be implemented clinically in a reliable manner, as predicting their behavior and biocompatibility remains an ongoing challenge. This review article will focus on discussing the current fabrication methods used to synthesize magneto-responsive materials, efforts to predict and characterize magneto-responsive biomaterial behavior, and the application of magneto-responsive biomaterials as controlled drug delivery systems, tissue engineering scaffolds, and artificial muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qui, Y.; Park, K. Environment–sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 2012, 64 Suppl, 49–60.

    Google Scholar 

  2. Li, Y. H.; Huang, G. Y.; Zhang, X. H.; Li, B. Q.; Chen, Y. M.; Lu, T. L.; Lu, T. J.; Xu, F. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 2013, 23, 660–672.

    Article  Google Scholar 

  3. Erb, R. M.; Martin, J. J.; Soheilian, R.; Pan, C. Z.; Barber, J. R. Actuating soft matter with magnetic torque. Adv. Funct. Mater. 2016, 26, 3859–3880.

    Article  Google Scholar 

  4. Schmaljohann, D. Thermo–and pH–responsive polymers in drug delivery. Adv. Drug. Deliv. Rev. 2006, 58, 1655–1670.

    Article  Google Scholar 

  5. Nguyen, K. T.; West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002, 23, 4307–4314.

    Article  Google Scholar 

  6. Bawa, P.; Pillay, V.; Choonara, Y. E.; du Toit, L. C. Stimuli–responsive polymers and their applications in drug delivery. Biomed. Mater. 2009, 4, 022001.

    Article  Google Scholar 

  7. Liu, F.; Urban, M. W. Recent advances and challenges in designing stimuli–responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23.

    Article  Google Scholar 

  8. Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46.

    Article  Google Scholar 

  9. Gaharwar, A. K.; Peppas, N. A.; Khademhosseini, A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014, 111, 441–453.

    Article  Google Scholar 

  10. Shubayev, V. I.; Pisanic II, T. R.; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug. Deliv. Rev. 2009, 61, 467–477.

    Article  Google Scholar 

  11. Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.

    Article  Google Scholar 

  12. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181.

    Article  Google Scholar 

  13. Ito, A.; Ino, K.; Hayashida, M.; Kobayashi, T.; Matsunuma, H.; Kagami, H.; Ueda, M.; Honda, H. Novel methodology for fabrication of tissue–engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 2005, 11, 1553–1561.

    Article  Google Scholar 

  14. Ito, A.; Takizawa, Y.; Honda, H.; Hata, K. I.; Kagami, H.; Ueda, M.; Kobayashi, T. Tissue engineering using magnetite nanoparticles and magnetic force: Heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 2004, 10, 833–840.

    Article  Google Scholar 

  15. Ito, A.; Hibino, E.; Kobayashi, C.; Terasaki, H.; Kagami, H.; Ueda, M.; Kobayashi, T.; Honda, H. Construction and delivery of tissue–engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng. 2005, 11, 489–496.

    Article  Google Scholar 

  16. Hughes, S.; El Haj, A. J.; Dobson, J. Magnetic micro–and nanoparticle mediated activation of mechanosensitive ion channels. Med. Eng. Phys. 2005, 27, 754–762.

    Article  Google Scholar 

  17. Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. H. Synthesis and characterization of silica–coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir 2001, 17, 2900–2906.

    Article  Google Scholar 

  18. Dobson, J. Magnetic nanoparticles for drug delivery. Drug. Dev. Res 2006, 67, 55–60.

    Article  Google Scholar 

  19. Singh, N.; Jenkins, G. J. S.; Asadi, R.; Doak, S. H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010, 1, 5358.

    Article  Google Scholar 

  20. Wang, L.; Wang, Z. J.; Li, X. M.; Zhang, Y.; Yin, M.; Li, J.; Song, H. Y.; Shi, J. Y.; Ling, D. S.; Wang, L. H. et al. Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. Nano Res. 2018, 11, 2746–2755.

    Article  Google Scholar 

  21. Janko, C.; Zaloga, J.; Pöttler, M.; Dürr, S.; Eberbeck, D.; Tietze, R.; Lyer, S.; Alexiou, C. Strategies to optimize the biocompatibility of iron oxide nanoparticles—“SPIONs safe by design”. J. Magn. Magn. Mater. 2017, 431, 281–284.

    Article  Google Scholar 

  22. Jain, T. K.; Reddy, M. K.; Morales, M. A.; Leslie–Pelecky, D. L.; Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 2008, 5, 316–327.

    Article  Google Scholar 

  23. Zhao, X. H.; Kim, J.; Cezar, C. A.; Huebsch, N.; Lee, K.; Bouhadir, K.; Mooney, D. J. Active scaffolds for on–demand drug and cell delivery. Proc. Natl. Acad. Sci. USA 2011, 108, 67–72.

    Article  Google Scholar 

  24. Kang, T.; Li, F. Y.; Baik, S.; Shao, W.; Ling, D. S.; Hyeon, T. Surface design of magnetic nanoparticles for stimuliresponsive cancer imaging and therapy. Biomaterials 2017, 136, 98–114.

    Article  Google Scholar 

  25. Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug. Deliv. Rev. 2008, 60, 1252–1265.

    Article  Google Scholar 

  26. Tian, X.; Zhang, L. C.; Yang, M.; Bai, L.; Dai, Y. H.; Yu, Z. Q.; Pan, Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1476.

    Article  Google Scholar 

  27. Sapir, Y.; Cohen, S.; Friedman, G.; Polyak, B. The promotion of in vitro vessel–like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 2012, 33, 4100–4109.

    Article  Google Scholar 

  28. Liu, H. X.; Wang, C. Y.; Gao, Q. X.; Liu, X. X.; Tong, Z. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomater. 2010, 6, 275–281.

    Article  Google Scholar 

  29. Fuhrer, R.; Hofmann, S.; Hild, N.; Vetsch, J. R.; Herrmann, I. K.; Grass, R. N.; Stark, W. J. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 2013, 8, e81362.

    Article  Google Scholar 

  30. Bannerman, A. D.; Li, X. Y.; Wan, W. K. A “degradable” poly(vinyl alcohol) iron oxide nanoparticle hydrogel. Acta Biomater. 2017, 58, 376–385.

    Article  Google Scholar 

  31. Ouyang, K.; Zhu, C. H.; Zhao, Y.; Wang, L. C.; Xie, S.; Wang, Q. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids. Appl. Surf. Sci. 2015, 355, 562–569.

    Article  Google Scholar 

  32. Hu, S. H.; Liu, T. Y.; Tsai, C. H.; Chen, S. Y. Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 2007, 310, 2871–2873.

    Article  Google Scholar 

  33. Hernández, R.; Mijangos, C. In situ synthesis of magnetic iron oxide nanoparticles in thermally responsive alginate–poly (N–isopropylacrylamide) semi–interpenetrating polymer networks. Macromol. Rapid Commun. 2009, 30, 176–181.

    Article  Google Scholar 

  34. Wang, Y. L.; Li, B. Q.; Zhou, Y.; Jia, D. C. Chitosan–induced synthesis of magnetite nanoparticles via iron ions assembly. Polym. Adv. Technol. 2008, 19, 1256–1261.

    Article  Google Scholar 

  35. Ilg, P. Stimuli–responsive hydrogels cross–linked by magnetic nanoparticles. Soft Matter 2013, 9, 3465–3468.

    Article  Google Scholar 

  36. Ekenseair, A. K.; Boere, K. W. M.; Tzouanas, S. N.; Vo, T. N.; Kasper, F. K.; Mikos, A. G. Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering. Biomacromolecules 2012, 13, 1908–1915.

    Article  Google Scholar 

  37. Bock, N.; Riminucci, A.; Dionigi, C.; Russo, A.; Tampieri, A.; Landi, E.; Goranov, V. A.; Marcacci, M.; Dediu, V. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 2010, 6, 786–796.

    Article  Google Scholar 

  38. Wahl, D.; Czernuszka, J. Collagen–hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 2006, 11, 43–56.

    Article  Google Scholar 

  39. Muschler, G. F.; Nakamoto, C.; Griffith, L. G. Engineering principles of clinical cell–based tissue engineering. J. Bone Joint Surg. Am. 2004, 86–A, 1541–1558.

    Google Scholar 

  40. Orr, A. W.; Helmke, B. P.; Blackman, B. R.; Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 2006, 10, 11–20.

    Article  Google Scholar 

  41. Silva, E. D.; Gonçalves, A. I.; Santos, L. J.; Rodrigues, M. T.; Gomes, M. E. Magnetic–responsive materials for tissue engineering and regenerative medicine. In Smart Materials for Tissue Engineering: Fundamental Principles; Wang, Q., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2017.

    Google Scholar 

  42. Glogauer, M.; Ferrier, J.; McCulloch, C. Magnetic fields applied to collagen–coated ferric oxide beads induce stretchactivated Ca2+ flux in fibroblasts. Am. J. Physiol. 1995, 269, C1093–C1104.

    Article  Google Scholar 

  43. Glogauer, M.; Ferrier, J. A new method for application of force to cells via ferric oxide beads. Pflügers Arch. 1997, 435, 320–327.

    Article  Google Scholar 

  44. Pommerenke, H.; Schreiber, E.; Dürr, F.; Nebe, B.; Hahnel, C.; Möller, W.; Rychly, J. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur. J. Cell Biol. 1996, 70, 157–164.

    Google Scholar 

  45. Plouffe, B. D.; Lewis, L. H.; Murthy, S. K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics 2011, 5, 013413.

    Article  Google Scholar 

  46. Lewis, L. H.; Barua, R.; Lejeune, B. Developing magnetofunctionality: Coupled structural and magnetic phase transition in AlFe2B2. J. Alloys Compd. 2015, 650, 482–488.

    Article  Google Scholar 

  47. McCain, M. L.; Parker, K. K. Mechanotransduction: The role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch. 2011, 462, 89–104.

    Article  Google Scholar 

  48. Nava, M. M.; Raimondi, M. T.; Pietrabissa, R. Controlling self–renewal and differentiation of stem cells via mechanical cues. J. Biomed. Biotechnol. 2012, 2012, 797410.

    Article  Google Scholar 

  49. Henstock, J. R.; Rotherham, M.; Rashidi, H.; Shakesheff, K. M.; El Haj, A. J. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: Applications for injectable cell therapy. Stem Cells Transl. Med. 2014, 3, 1363–1374.

    Article  Google Scholar 

  50. Lee, K. M.; Tsai, K. Y.; Wang, N.; Ingber, D. E. Extracellular matrix and pulmonary hypertension: Control of vascular smooth muscle cell contractility. Am. J. Physiol. 1998, 274, H76–H82.

    Article  Google Scholar 

  51. Sapir–Lekhovitser, Y.; Rotenberg, M. Y.; Jopp, J.; Friedman, G.; Polyak, B.; Cohen, S. Magnetically actuated tissue engineered scaffold: Insights into mechanism of physical stimulation. Nanoscale 2016, 8, 3386–3399.

    Article  Google Scholar 

  52. Hughes, S.; McBain, S.; Dobson, J.; El Haj, A. J. Selective activation of mechanosensitive ion channels using magnetic particles. J. Roy. Soc. Interface 2008, 5, 855–863.

    Article  Google Scholar 

  53. Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.

    Article  Google Scholar 

  54. Bettini, S.; Bonfrate, V.; Syrgiannis, Z.; Sannino, A.; Salvatore, L.; Madaghiele, M.; Valli, L.; Giancane, G. Biocompatible collagen paramagnetic scaffold for controlled drug release. Biomacromolecules 2015, 16, 2599–2608.

    Article  Google Scholar 

  55. Peters, C.; Hoop, M.; Pané, S.; Nelson, B. J.; Hierold, C. Degradable magnetic composites for minimally invasive interventions: Device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 2016, 28, 533–538.

    Article  Google Scholar 

  56. Lu, Y.; Sun, W. J.; Gu, Z. Stimuli–responsive nanomaterials for therapeutic protein delivery. J. Control. Release 2014, 194, 1–19.

    Article  Google Scholar 

  57. Di, J.; Yu, J. C.; Wang, Q.; Yao, S. S.; Suo, D. J.; Ye, Y. Q.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound–triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017, 10, 1393–1402.

    Article  Google Scholar 

  58. Miyata, T.; Uragami, T.; Nakamae, K. Biomolecule–sensitive hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 79–98.

    Article  Google Scholar 

  59. Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57.

    Article  Google Scholar 

  60. Chan, A.; Orme, R. P.; Fricker, R. A.; Roach, P. Remote and local control of stimuli responsive materials for therapeutic applications. Adv. Drug Deliv. Rev. 2013, 65, 497–514.

    Article  Google Scholar 

  61. Kost, J.; Noecker, R.; Kunica, E.; Langer, R. Magnetically controlled release systems: Effect of polymer composition. J. Biomed. Mater. Res. 1985, 19, 935–940.

    Article  Google Scholar 

  62. Kost, J.; Wolfrum, J.; Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 1987, 21, 1367–1373.

    Article  Google Scholar 

  63. Saslawski, O.; Weingarten, C.; Benoit, J. P.; Couvreur, P. Magnetically responsive microspheres for the pulsed delivery of insulin. Life Sci. 1988, 42, 1521–1528.

    Article  Google Scholar 

  64. Saslawski, O.; Couvreur, P.; Peppas, N. Alginate magnetic release systems: Crosslinked structure, swelling and release studies. In Proceedings of the International Symposium on Controlled Release of Bioactive Materials, Basel, Switzerland, 1988, pp 46.

    Google Scholar 

  65. Casolaro, M.; Casolaro, I. Pulsed release of antidepressants from nanocomposite hydrogels. Biol., Eng. Med. 2017, 2, 1–8.

    Google Scholar 

  66. Kara, M. O. P.; Ekenseair, A. K. Free epoxide content mediates encapsulated cell viability and activity through protein interactions in a thermoresponsive, in situ forming hydrogel. Biomacromolecules 2017, 18, 1473–1481.

    Article  Google Scholar 

  67. Rewar, S.; Bansal, B. K.; Singh, C. J.; Sharma, A. K. Pulsatile drug delivery release technologies: An overview. Int. J. Res. Dev. Pharm. Life Sci. 2015, 4, 1386–1393.

    Google Scholar 

  68. Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Selfasfsembled hyaluronic acid nanoparticles for pH–sensitive release of doxorubicin: Synthesis and in vitro characterization. J. Biomed. Nanotechnol. 2017, 13, 1058–1068.

    Article  Google Scholar 

  69. Zheng, H.; Yin, L. Q.; Zhang, X. Q.; Zhang, H.; Hu, R.; Yin, Y. H.; Qiu, T.; Xiong, X.; Wang, Q. Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor–targeted drug delivery. J. Biomed. Nanotechnol. 2016, 12, 1641–1653.

    Article  Google Scholar 

  70. Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Synthesis and in vitro characterization of carboxymethyl chitosan–CBA–doxorubicin conjugate nanoparticles as pH–sensitive drug delivery systems. J. Biomed. Nanotechnol. 2017, 13, 1097–1105.

    Article  Google Scholar 

  71. Zhang, X. Q; Zhang, H.; Yin, L. Q.; Hu, R.; Qiu, T.; Yin, Y. H.; Xiong, X.; Zheng, H.; Wang, Q. A pH–sensitive nanosystem based on carboxymethyl chitosan for tumortargeted delivery of daunorubicin. J. Biomed. Nanotechnol. 2016, 12, 1688–1698.

    Article  Google Scholar 

  72. Chang, B. S.; Sha, X. Y.; Guo, J.; Jiao, Y. F.; Wang, C. C.; Yang, W. L. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem. 2011, 21, 9239–9247.

    Article  Google Scholar 

  73. Xie, W. S.; Gao, Q.; Guo, Z. H.; Wang, D.; Gao, F.; Wang, X. M.; Wei, Y.; Zhao, L. Y. Injectable and self–healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple–negative breast cancer. ACS Appl. Mater. Inter. 2017, 9, 33660–33673.

    Article  Google Scholar 

  74. Meenach, S. A.; Shapiro, J. M.; Hilt, J. Z.; Anderson, K. W. Characterization of PEG–iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J. Biomat. Sci., Polym. E 2013, 24, 1112–1126.

    Article  Google Scholar 

  75. Sneed, P. K.; Stauffer, P. R.; McDermott, M. W.; Diederich, C. J.; Lamborn, K. R.; Prados, M. D.; Chang, S.; Weaver, K. A.; Spry, L.; Malec, M. K. et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 287–295.

    Article  Google Scholar 

  76. Falk, M. H.; Issels, R. D. Hyperthermia in oncology. Int. J. Hyperther. 2001, 17, 1–18.

    Article  Google Scholar 

  77. Markides, H.; McLaren, J. S.; El Haj, A. J. Overcoming translational challenges—The delivery of mechanical stimuli in vivo. Int. J. Biochem. Cell Biol. 2015, 69, 162–172.

    Article  Google Scholar 

  78. Meng, J.; Xiao, B.; Zhang, Y.; Liu, J.; Xue, H. D.; Lei, J.; Kong, H.; Huang, Y. G.; Jin, Z. Y.; Gu, N. et al. Superparamagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 2013, 3, 2655.

    Article  Google Scholar 

  79. Sun, Y. B.; Chen, C. S.; Fu, J. P. Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment. Ann. Rev. Biophys. 2012, 41, 519–542.

    Article  Google Scholar 

  80. Xu, H. Y.; Gu, N. Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration. Front. Mater. Sci. 2014, 8, 20–31.

    Article  Google Scholar 

  81. Zhang, H.; Xia, J. Y.; Pang, X. L.; Zhao, M.; Wang, B. Q.; Yang, L. L.; Wan, H. S.; Wu, J. B.; Fu, S. Z. Magnetic nanoparticle–loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng.: C 2016, 73, 537–543.

    Article  Google Scholar 

  82. Panseri, S.; Russo, A.; Giavaresi, G.; Sartori, M.; Veronesi, F.; Fini, M.; Salter, D.; Ortolani, A.; Strazzari, A.; Visani, A. et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J. Biomed. Mater. Res. A 2012, 100, 2278–2286.

    Google Scholar 

  83. Hajinasab, A.; Saber–Samandari, S.; Ahmadi, S.; Alamara, K. Preparation and characterization of a biocompatible magnetic scaffold for biomedical engineering. Mater. Chem. Phys. 2018, 204, 378–387.

    Article  Google Scholar 

  84. Harvey, E. J.; Giannoudis, P. V.; Martineau, P. A.; Lansdowne, J. L.; Dimitriou, R.; Moriarty, T. F.; Richards, R. G. Preclinical animal models in trauma research. J. Orthop. Trauma 2011, 25, 488–493.

    Article  Google Scholar 

  85. Park, H.; Temenoff, J. S.; Holland, T. A.; Tabata, Y.; Mikos, A. G. Delivery of TGF–β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005, 26, 7095–7103.

    Article  Google Scholar 

  86. Levenberg, S.; Rouwkema, J.; Macdonald, M.; Garfein, E. S.; Kohane, D. S.; Darland, D. C.; Marini, R.; van Blitterswijk, C. A.; Mulligan, R. C.; D'Amore, P. A. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 2005, 23, 879–884.

    Article  Google Scholar 

  87. Sun, T.; Shi, Q.; Huang, Q.; Wang, H. P.; Xiong, X. L.; Hu, C. Z.; Fukuda, T. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular–like structures. Acta Biomater. 2018, 66, 272–281.

    Article  Google Scholar 

  88. Liu, Y. Q.; Xu, K. G.; Chang, Q.; Darabi, M. A.; Lin, B. J.; Zhong, W.; Xing, M. Highly flexible and resilient elastin hybrid cryogels with shape memory, injectability, conductivity, and magnetic responsive properties. Adv. Mater. 2016, 28, 7758–7767.

    Article  Google Scholar 

  89. Bonfrate, V.; Manno, D.; Serra, A.; Salvatore, L.; Sannino, A.; Buccolieri, A.; Serra, T.; Giancane, G. Enhanced electrical conductivity of collagen films through long–range aligned iron oxide nanoparticles. J. Colloid Interf. Sci. 2017, 501, 185–191.

    Article  Google Scholar 

  90. Steele, L.; Margolis, G.; Cohen, S.; Polyak, B. Applications of magnetic–responsive materials for cardiovascular tissue engineering. In Smart Materials for Tissue Engineering: Applications; Wang, Q., Ed.; The Royal Society of Chemistry: London, UK, 2017.

    Google Scholar 

  91. Antman–Passig, M.; Shefi, O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016, 16, 2567–2573.

    Article  Google Scholar 

  92. Zrinyi, M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym. Sci. 2000, 278, 98–103.

    Article  Google Scholar 

  93. Szabó, D.; Szeghy, G.; Zrínyi, M. Shape transition of magnetic field sensitive polymer gels. Macromolecules 1998, 31, 6541–6548.

    Article  Google Scholar 

  94. Zrínyi, M.; Szabó, D.; Kilian, H. G. Kinetics of the shape change of magnetic field sensitive polymer gels. Polym. Gels Netw. 1998, 6, 441–454.

    Article  Google Scholar 

  95. Satarkar, N. S.; Hilt, J. Z. Hydrogel nanocomposites as remote–controlled biomaterials. Acta Biomater. 2008, 4, 11–16.

    Article  Google Scholar 

  96. Farshad, M.; Le Roux, M. Compression properties of magnetostrictive polymer composite gels. Polym. Test. 2005, 24, 163–168.

    Article  Google Scholar 

  97. Zhou, Y. X.; Sharma, N.; Deshmukh, P.; Lakhman, R. K.; Jain, M.; Kasi, R. M. Hierarchically structured free–standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross–linkers. J. Am. Chem. Soc. 2012, 134, 1630–1641.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam K. Ekenseair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adedoyin, A.A., Ekenseair, A.K. Biomedical applications of magneto-responsive scaffolds. Nano Res. 11, 5049–5064 (2018). https://doi.org/10.1007/s12274-018-2198-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2198-2

Keywords

Navigation