Skip to main content

Immobilization of Enzymes onto Silica-Based Nanomaterials for Bioprocess Applications

  • Chapter
  • First Online:
Immobilization Strategies

Abstract

Enzyme-assisted catalysis have long been considered a risky venture for many industrial processes despite their unique advantages, specificity, and activity. The use of free enzymes often lack economic viability and commercial feasibility for industrial use since they are expensive, incapable to withstand harsh conditions during downstream processing, and are extremely difficult to recover. Developing novel interventions employing nanomaterials as an immobilization template has greatly improved in minimizing these obstacles, thereby promoting activity and recycling of enzymes. As a result, self-assembled enzymes over nanomaterials have demonstrated great success particularly in biomedical sector, using novel nanobiocatalysts (NBCs) for diagnostic and therapeutic purposes. However, the use of such hybrid system for the production of value-added biochemical products is yet another domain, which has not been much explored. This chapter thus provides some useful insights using enzyme-nanohybrids for bioprocessing applications, particularly in the field of carbohydrate hydrolysis, biotransformation, and biofuel production. Several nanocomposites were considered for enzyme immobilization owing to their extraordinary characteristics such as non-toxic, ease in modification, high porosity ,and extremely stable toward adverse conditions. All selected studies were critically evaluated in terms of enzyme used, immobilization strategies, process parameters (enzymes’ stability, activity, loading, and recycling), and product specifications (yield, productivity, and purity). Relevant challenges encountered using nanomaterials, especially for the production of industrially relevant biochemical products, were also discussed at the end, which needs to be addressed in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-D:

Three dimensional

ºC:

Degree Celsius

Al:

Aluminium

APTMS:

(3-Aminopropyl)trimethoxysilane

B:

Boron

CaA:

Calcium aluminosilicate

Cu:

Copper

Fe:

Iron

G:

Gram

Ga:

Galliu

H:

Hour

HMF:

5-Hydroxyfurfural

L:

Liter

MCFs:

Mesostructured silica foams

MCM:

Mobil Composition of Matter

mg:

Milligram

mL:

Milliliter

MTS:

Micelle-templated silica

NaA:

Sodium forms of zeolites A

NaX:

Sodium forms of zeolites X

NaY:

Sodium forms of zeolites Y

NBC:

Nanobiocatalyst

PDDA:

Poly(diallyldimethylammonium chloride)

PEs:

Polyelectrolytes

SBA:

Santa Barbara Amorphous

Si:

Silicon

TMAH:

Tetramethyl ammonium hydroxide

v/v:

Volume by volume

wt%:

Weight percentage

ZIF:

Zeolitic imidazolate framework

ZSM:

Zeolite Socony Mobil

References

  • Agnihotri S, Dhiman NK, Tripathi A (2018) Antimicrobial surface modification of polymeric biomaterials. Elsevier, pp 435–486

    Google Scholar 

  • Agnihotri S, Bajaj G, Mukherji S, Mukherji S (2015) Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7(16):7415–7429

    Article  CAS  Google Scholar 

  • Agnihotri S, Dhiman NK (2017) Development of nano-antimicrobial biomaterials for biomedical applications. In: advances in biomaterials for biomedical applications. Springer, pp 479–545

    Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2(3):179–188

    Article  CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2013) Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale 5(16):7328–7340

    Article  CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983

    Article  CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2019) Impact of background water quality on disinfection performance and silver release of immobilized silver nanoparticles: modeling disinfection kinetics, bactericidal mechanism and aggregation behavior. Chem Eng J 372:684–696

    Article  CAS  Google Scholar 

  • Agnihotri S, Sillu D, Sharma G, Arya RK (2018) Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: process optimization and modeling kinetics for dye removal. Appl Nanosci 8(8):2077–2092

    Article  CAS  Google Scholar 

  • Agustian J, Hermida L (2019) Capability of immobilised glucoamylase on mesostructured cellular foam silica to hydrolyse tapioca starch. In: Paper presented at the IOP conference series: materials science and engineering

    Google Scholar 

  • Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):1

    CAS  Google Scholar 

  • Ajayi OA, Nok AJ, Adefila SS (2012) Immobilization of cassava linamarase on kankara kaolinite clay. J Nat Sci Res 2:55–62

    Google Scholar 

  • Alcalde M, Bulter T, Arnold FH (2002) Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. J Biomol Screen 7(6):547–553

    Article  CAS  Google Scholar 

  • Alkan S, Ceylan H, Arslan O (2005) Bentonite-supported catalase. J Serbian Chem Soc 70(5):721–726

    Google Scholar 

  • An N, Zhou CH, Zhuang XY, Tong DS, Yu WH (2015) Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl Clay Sci 114:283–296

    Article  CAS  Google Scholar 

  • Babaki M, Yousefi M, Habibi Z, Mohammadi M, Yousefi P, Mohammadi J, Brask J (2016) Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renew Energy 91:196–206

    Article  CAS  Google Scholar 

  • Bautista LF, Morales G, Sanz R (2010) Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Bioresour Technol 101(22):8541–8548

    Google Scholar 

  • Bayramoglu G, Akbulut A, Ozalp VC, Arica MY (2015) Immobilized lipase on micro-porous biosilica for enzymatic transesterification of algal oil. Chem Eng Res Des 95:12–21

    Google Scholar 

  • Bayramoglu G, Arica MY, Genc A, Ozalp VC, Ince A, Bicak N (2016) A facile and efficient method of enzyme immobilization on silica particles via Michael acceptor film coatings: immobilized catalase in a plug flow reactor. Bioprocess Biosyst Eng 39(6):871–881

    Google Scholar 

  • Bayramoglu G, Senkal BF, Arica MY (2013) Preparation of clay–poly (glycidyl methacrylate) composite support for immobilization of cellulase. Appl Clay Sci 85:88–95

    Google Scholar 

  • Benucci I, Liburdi K, Cacciotti I, Lombardelli C, Zappino M, Nanni F, Esti M (2018) Chitosan/clay nanocomposite films as supports for enzyme immobilization: an innovative green approach for winemaking applications. Food Hydrocoll 74:124–131

    Article  CAS  Google Scholar 

  • Bergaya F, Lagaly G (2013) Handbook of clay science, vol 5, Newnes

    Google Scholar 

  • Bharti S, Agnihotri S, Mukherji S, Mukherji S (2015) Effectiveness of immobilized silver nanoparticles in inactivation of pathogenic bacteria. J Environ Res Dev 9(3A):849–856

    CAS  Google Scholar 

  • Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854–3871

    Article  CAS  Google Scholar 

  • Bonzom C, Schild L, Gustafsson H, Olsson L (2018) Feruloyl esterase immobilization in mesoporous silica particles and characterization in hydrolysis and transesterification. BMC Biochem 19(1):1

    Article  CAS  Google Scholar 

  • Boros Z, Weiser D, Márkus M, Abaháziová E, Magyar Á, Tomin A, Koczka B, Kovács P, Poppe L (2013) Hydrophobic adsorption and covalent immobilization of Candida antarctica lipase B on mixed-function-grafted silica gel supports for continuous-flow biotransformations. Process Biochem 48(7):1039–1047

    Google Scholar 

  • Boyd SA, Mortland MM (1990) Enzyme interactions with clay and clay-organic matter complexes. Soil Biochemistry 6, 1–128

    Google Scholar 

  • Brena BM, Batista-Viera F (2006) Immobilization of enzymes. Immobilization of enzymes and cell. Springer, pp 15–30

    Google Scholar 

  • Cacciotti I, Lombardelli C, Benucci I, Esti M (2019). Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. J Mater Res Technol

    Google Scholar 

  • Cai C, Gao Y, Liu Y, Zhong N, Liu N (2016) Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Food Chem 212:205–212

    Google Scholar 

  • Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3(11):1227–1235

    Article  CAS  Google Scholar 

  • Cao J, Li Y, Tu Ni, Lv Y, Chen Q, Dong H (2016) Novel enzyme/exfoliated bentonite nanohybrids as highly efficient and recyclable biocatalysts in hydrolytic reaction. J Mol Catal B Enzym 132:41–46

    Article  CAS  Google Scholar 

  • Cao S-L, Xu H, Lai L-H, Gu W-M, Xu P, Xiong J, Yin H, Li X-H, Ma Y-Z, Zhou J (2017) Magnetic ZIF-8/cellulose/Fe3O4 nanocomposite: preparation, characterization, and enzyme immobilization. Bioresour Bioprocess 4(1):56

    Google Scholar 

  • Care A, Petroll K, Gibson ESY, Bergquist PL, Sunna A (2017) Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides. Biotechnol Biofuels 10(1):29

    Article  CAS  Google Scholar 

  • Chang M-Y, Juang R-S (2007) Use of chitosan–clay composite as immobilization support for improved activity and stability of β-glucosidase. Biochem Eng J 35(1):93–98

    Article  CAS  Google Scholar 

  • Chang M-Y, Kao H-C, Juang R-S (2008) Thermal inactivation and reactivity of β-glucosidase immobilized on chitosan–clay composite. Int J Biol Macromol 43(1):48–53

    Article  CAS  Google Scholar 

  • Chao C, Guan H, Zhang J, Liu Y, Zhao Y, Zhang B (2017) Immobilization of laccase onto porous polyvinyl alcohol/halloysite hybrid beads for dye removal. Water Sci Technol 77(3):809–818

    Article  CAS  Google Scholar 

  • Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang Xu, Chen R (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfces 5(21):10559–10564

    Google Scholar 

  • Chao C, Zhao Y, Guan H, Liu G, Hu Z, Zhang B (2017) Improved performance of immobilized laccase on poly (diallyldimethylammonium chloride) functionalized halloysite for 2, 4-dichlorophenol degradation. Environ Eng Sci 34(10):762–770

    Article  CAS  Google Scholar 

  • Chauhan A, Sillu D, Agnihotri S (2019) Removal of pharmaceutical contaminants in wastewater using nanomaterials: a comprehensive review. Curr Drug Metab 20(6):483–505

    Article  CAS  Google Scholar 

  • Cho HJ, Jang WJ, Moon SY, Lee JM, Kim J-H, Han H-S, Kim K-W, Lee B-J, Kong I-S (2018) Immobilization of β-1, 3–1, 4-glucanase from Bacillus sp. on porous silica for production of β-glucooligosaccharides. Enzyme Microb Technol 110:30–37

    Google Scholar 

  • Chrisnasari R, Wuisan ZG, Budhyantoro A, Widi RK (2015) Glucose oxidase immobilization on TMAH-modified bentonite. Indones J Chem 15(1):22–28

    Google Scholar 

  • Colín-Luna JA, Zamora-Rodea EG, González-Brambila MM, Barrera-Calva E, Rosas-Cedillo R, Medina-Mendoza AK, García-Martínez JC (2018) Biodiesel production using immobilized lipase supported on a zirconium-pillared clay. Effect of the immobilization method. Int J Chem React Eng 16(11)

    Google Scholar 

  • Dai H, Ou S, Liu Z, Huang H (2017) Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr Polym 169:504–514

    Google Scholar 

  • Dai JC, Huang JT (1999) Surface modification of clays and clay–rubber composite. Appl Clay Sci 15(1–2):51–65

    Article  CAS  Google Scholar 

  • Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1), 1–9

    Google Scholar 

  • De Castro HF, De Oliveira PC, Pereira EB (1997) Evaluation of different approaches for lipase catalysed synthesis of citronellyl acetate. Biotechnol Lett 19(3):229–232

    Google Scholar 

  • de Souza Lima J, Costa FN, Bastistella MA, de Araújo PHH, de Oliveira D (2019) Functionalized kaolin as support for endoglucanase immobilization. Bioprocess Biosyst Eng 1–9

    Google Scholar 

  • de Vasconcellos A, Laurenti JB, Miller AH, da Silva DA, de Moraes FR, Aranda Donato AG, Nery JG (2015) Potential new biocatalysts for biofuel production: the fungal lipases of Thermomyces lanuginosus and Rhizomucor miehei immobilized on zeolitic supports ion exchanged with transition metals. Microporous Mesoporous Mater 214:166–180

    Google Scholar 

  • de Vasconcellos A, Miller AH, Aranda DAG, Nery JG (2018) Biocatalysts based on nanozeolite-enzyme complexes: effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock. Colloids Surf B 165:150–157

    Article  CAS  Google Scholar 

  • de Vries JG (2016) Catalytic conversion of renewable resources into bulk and fine chemicals. Chem Rec 16(6):2787–2800

    Article  CAS  Google Scholar 

  • Dhiman NK, Agnihotri S (2020) Hierarchically aligned nano silver/chitosan-PVA hydrogel for point-of-use water disinfection: Contact-active mechanism revealed. Environ Sci Nano 7:2337–2350

    Google Scholar 

  • Dhiman NK, Agnihotri S, Shukla R (2019) Silver-based polymeric nanocomposites as antimicrobial coatings for biomedical applications. In: Nanotechnology in modern animal biotechnology. Springer, pp 115–171

    Google Scholar 

  • Fang Y, Huang X-J, Chen P-C, Xu Z-K (2011) Polymer materials for enzyme immobilization and their application in bioreactors. BMB Rep 44(2):87–95

    Google Scholar 

  • Fatimah Is, Huda T (2013) Preparation of cetyltrimethylammonium intercalated Indonesian montmorillonite for adsorption of toluene. Appl Clay Sci 74:115–120

    Article  CAS  Google Scholar 

  • Forano C, Vial S, Mousty C (2006) Nanohybrid enzymes-layered double hydroxides: potential applications. Curr Nanosci 2(3):283–294

    Google Scholar 

  • Fried DI, Brieler FJ, Froeba M (2013) Designing inorganic porous materials for enzyme adsorption and applications in biocatalysis. ChemCatChem 5(4):862–884

    Article  CAS  Google Scholar 

  • Fu H, Dencic I, Tibhe J, Pedraza CAS, Wang Q, Noel T, Meuldijk J, de Croon MHJM, Hessel V, Weizenmann N (2012) Threonine aldolase immobilization on different supports for engineering of productive, cost-efficient enzymatic microreactors. Chem Eng J 207:564–576

    Article  CAS  Google Scholar 

  • Fujimori A, Arai S, Soutome Y, Hashimoto M (2014) Improvement of thermal stability of enzyme via immobilization on Langmuir-Blodgett films of organo-modified aluminosilicate with high coverage. Colloids Surf A 448:45–52

    Article  CAS  Google Scholar 

  • Garmroodi M, Mohammadi M, Ramazani A, Ashjari M, Mohammadi J, Sabour B, Yousefi M (2016) Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports. Int J Biol Macromol 86:208–215

    Article  CAS  Google Scholar 

  • Ghasemi Z, Sourinejad I, Kazemian H, Rohani S (2018) Application of zeolites in aquaculture industry: a review. Rev Aquac 10(1):75–95

    Google Scholar 

  • Gholamzadeh P, Mohammadi Ziarani G, Badiei A (2017) Immobilization of lipases onto the SBA-15 mesoporous silica. Biocatal Biotransformation 35(3), 131–150

    Google Scholar 

  • Golbaha N, Ramli Z, Endud S (2016) Immobilization of lipase onto mesoporous silica KIT-6 and montmorillonite K10 for enzymatic hydrolysis of tributyrin. Malay J Fundamental Appl Sci 12(1)

    Google Scholar 

  • Gonçalves APV, Lopes JM, Lemos F, Ribeiro FR, Prazeres DMF, Cabral JMS, Aires-Barros MR (1996) Zeolites as supports for enzymatic hydrolysis reactions. Comparative study of several zeolites. J Mol Catal B Enzym 1(2), 53–60

    Google Scholar 

  • González-Delgado I, Segura Y, Martín A, López-Muñoz M-J, Morales G (2018) β-Galactosidase covalent immobilization over large-pore mesoporous silica supports for the production of high galacto-oligosaccharides (GOS). Microporous Mesoporous Mater 257:51–61

    Article  CAS  Google Scholar 

  • Gopinath S, Sugunan S (2007) Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity. Appl Clay Sci 35(1–2):67–75

    Article  CAS  Google Scholar 

  • Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Subst Biotechnol 39(2):98–109

    Article  CAS  Google Scholar 

  • Han Q, Zhang H, Sun J, Liu Z, Huang W-C, Xue C, Mao X (2019) Immobilization of phospholipase D on silica-coated magnetic nanoparticles for the synthesis of functional phosphatidylserine. Catalysts 9(4):361

    Article  CAS  Google Scholar 

  • Han Y-J, Watson JT, Stucky GD, Butler A (2002) Catalytic activity of mesoporous silicate-immobilized chloroperoxidase. J Mol Catal B Enzym 17(1):1–8

    Article  CAS  Google Scholar 

  • Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas–benefits and challenges. Chem Soc Rev 42(15):6277–6289

    Article  CAS  Google Scholar 

  • He H, Han H, Shi H, Tian Y, Sun F, Song Y, Li Q, Zhu G (2016) Construction of thermophilic lipase-embedded metal–organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl Mater Interfaces 8(37):24517–24524

    Google Scholar 

  • Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251

    Article  CAS  Google Scholar 

  • Holm MS, Taarning E, Egeblad K, Christensen CH (2011) Catalysis with hierarchical zeolites. Catal Today 168(1):3–16

    Article  CAS  Google Scholar 

  • Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6(4):185–205

    Article  Google Scholar 

  • Hu X, Wang P, Hwang H-M (2009) Oxidation of anthracene by immobilized laccase from Trametes versicolor. Bioresour Technol 100(21):4963–4968

    Google Scholar 

  • Hu X, Zhao X, Hwang H-M (2007) Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere 66(9):1618–1626

    Article  CAS  Google Scholar 

  • Ikemoto H, Chi Q, Ulstrup J (2010) Stability and catalytic kinetics of horseradish peroxidase confined in nanoporous SBA-15. J Phys Chem C 114(39):16174–16180

    Article  CAS  Google Scholar 

  • Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem 43(10):1019–1032

    Article  CAS  Google Scholar 

  • Jäger G, Büchs J (2012) Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J 7(9):1122–1136

    Article  CAS  Google Scholar 

  • Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20(5–6):801–821

    Article  CAS  Google Scholar 

  • Jian H, Wang Y, Bai Y, Li R, Gao R (2016) Site-specific, covalent immobilization of dehalogenase ST2570 catalyzed by formylglycine-generating enzymes and its application in batch and semi-continuous flow reactors. Molecules 21(7):895

    Article  CAS  Google Scholar 

  • Jlassi K, Krupa I, Chehimi MM (2017) Overview: clay preparation, properties, modification. In: Clay-polymer nanocomposites. Elsevier, pp 1–28

    Google Scholar 

  • Johnston CT, Premachandra GS, Szabo T, Lok J, Schoonheydt RA (2011) Interaction of biological molecules with clay minerals: a combined spectroscopic and sorption study of lysozyme on saponite. Langmuir 28(1):611–619

    Article  CAS  Google Scholar 

  • Kadam AA, Jang J, Jee SC, Sung J-S, Lee DS (2018) Chitosan-functionalized supermagnetic halloysite nanotubes for covalent laccase immobilization. Carbohydr Polym 194:208–216

    Google Scholar 

  • Kadam AA, Jang J, Lee DS (2017) Supermagnetically tuned halloysite nanotubes functionalized with aminosilane for covalent laccase immobilization. ACS Appl Mater Interfaces 9(18):15492–15501

    Google Scholar 

  • Kalburcu T, Tabak A, Ozturk N, Tuzmen N, Akgol S, Caglar B, Denizli A (2015) Adsorption of lysozyme from aqueous solutions by a novel bentonite–tyrptophane (Bent–Trp) microcomposite affinity sorbent. J Mol Struct 1083:156–162

    Article  CAS  Google Scholar 

  • Kaushal J, Singh G, Arya SK (2018) Immobilization of catalase onto chitosan and chitosan–bentonite complex: a comparative study. Biotechnol Rep 18:e00258

    Article  Google Scholar 

  • Kołodziejczak-Radzimska A, Jesionowski T (2019) Characterization of amino-, epoxy-and carbonyl-functionalized halloysite and its application in the immobilization of aminoacylase from Aspergillus melleus. Physicochem Probl Miner Process 55

    Google Scholar 

  • Kumari A, Kaur B, Srivastava R, Sangwan RS (2015) Isolation and immobilization of alkaline protease on mesoporous silica and mesoporous ZSM-5 zeolite materials for improved catalytic properties. Biochem Biophys Rep 2:108–114

    Google Scholar 

  • Lee Y-C, Chen C-T, Chiu Y-T, Wu K-W (2013) An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem 5(8):2153–2157

    Google Scholar 

  • Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240

    Article  CAS  Google Scholar 

  • Lie E, Molin G (1991) Hydrolysis and esterification with immobilized lipase on hydrophobic and hydrophilic zeolites. J Chem Technol Biotechnol 50(4):549–553

    Article  CAS  Google Scholar 

  • Lindeque RM, Woodley JM (2019) Reactor selection for effective continuous biocatalytic production of pharmaceuticals. Catalysts 9(3):262

    Article  CAS  Google Scholar 

  • Liu G, Xu Y, Han Y, Wu J, Xu J, Meng H, Zhang X (2017) Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8). Dalton Trans 46(7):2114–2121

    Article  CAS  Google Scholar 

  • Lyu F, Zhang Y, Zare RN, Ge J, Liu Z (2014) One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities. Nano Lett 14(10):5761–5765

    Article  CAS  Google Scholar 

  • Magner E (2013) Immobilisation of enzymes on mesoporous silicate materials. Chem Soc Rev 42(15):6213–6222

    Article  CAS  Google Scholar 

  • Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49

    Google Scholar 

  • Majumdar P, Khan AY, Bandyopadhyaya R (2016) Diffusion, adsorption and reaction of glucose in glucose oxidase enzyme immobilized mesoporous silica (SBA-15) particles: experiments and modeling. Biochem Eng J 105:489–496

    Article  CAS  Google Scholar 

  • Margolin AL (1991) Enzymes: use them. ChemTech 21(3):160–167

    CAS  Google Scholar 

  • Marthala VRR, Urmoneit L, Zhou Z, Machoke AGF, Schmiele M, Unruh T, Schwieger W, Hartmann M (2017) Boron-containing MFI-type zeolites with a hierarchical nanosheet assembly for lipase immobilization. Dalton Trans 46(13):4165–4169

    Article  CAS  Google Scholar 

  • Miložič N, Lubej M, Lakner M, Žnidaršič-Plazl P, Plazl I (2017) Theoretical and experimental study of enzyme kinetics in a microreactor system with surface-immobilized biocatalyst. Chem Eng J 313:374–381

    Article  CAS  Google Scholar 

  • Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144(1–3):15–18

    Article  CAS  Google Scholar 

  • Mitchell S, Pérez-Ramírez J (2011) Mesoporous zeolites as enzyme carriers: synthesis, characterization, and application in biocatalysis. Catal Today 168(1):28–37

    Article  CAS  Google Scholar 

  • Mohammadi M, Heshmati MK, Sarabandi K, Fathi M, Lim L-T, Hamishehkar H (2019) Activated alginate-montmorillonite beads as an efficient carrier for pectinase immobilization. Int J Biol Macromol 137:253–260

    Article  CAS  Google Scholar 

  • Mohammadi M, Habibi Z, Gandomkar S, Yousefi M (2018) A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports; application for enantioselective resolution of rac-ibuprofen. Int J Biol Macromol 117:523–531

    Article  CAS  Google Scholar 

  • Mravčáková M, Boukerma K, Omastová M, Chehimi MM (2006) Montmorillonite/polypyrrole nanocomposites. The effect of organic modification of clay on the chemical and electrical properties. Mater Sci Eng C 26(2–3), 306–313

    Google Scholar 

  • Muderrisoglu C, Sargin S, Yesil-Celiktas O (2018) Application of β-glucuronidase-immobilised silica gel formulation to microfluidic platform for biotransformation of β-glucuronides. Biotechnol Lett 40(5):773–780

    Google Scholar 

  • Mukherji S, Ruparelia J, Agnihotri S (2012) Antimicrobial activity of silver and copper nanoparticles: variation in sensitivity across various strains of bacteria and fungi. In: Nano-antimicrobials. Springer pp 225–251

    Google Scholar 

  • Mureseanu M, Galarneau A, Renard G, Fajula F (2005) A new mesoporous micelle-templated silica route for enzyme encapsulation. Langmuir 21(10):4648–4655

    Article  CAS  Google Scholar 

  • Mylonas E, Svergun DI (2007) Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. Appl Crystallogr 40(s1):s245–s249

    Article  CAS  Google Scholar 

  • Na’imah J, Prasetyawan S, Srihardyastutie A (2017) In vitro and in silico studies of immobilized xylanase on zeolite matrix activated with hydrochloric acid. J Pure Appl Chem Res 6(3):181

    Google Scholar 

  • Naseri M, Pitzalis F, Carucci C, Medda L, Fotouhi L, Magner E, Salis A (2018) Lipase and laccase encapsulated on zeolite imidazolate framework: enzyme activity and stability from voltammetric measurements. ChemCatChem 10(23):5425–5433

    Article  CAS  Google Scholar 

  • Ojeda K, Kafarov V (2009) Exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol. Chem Eng J 154(1–3):390–395

    Article  CAS  Google Scholar 

  • Olshansky Y, Masaphy S, Root RA, Rytwo G (2018) Immobilization of Rhus vernicifera laccase on sepiolite; effect of chitosan and copper modification on laccase adsorption and activity. Appl Clay Sci 152:143–147

    Article  CAS  Google Scholar 

  • Öztürk H, Pollet E, Phalip V, Güvenilir Y, Avérous L (2016) Nanoclays for lipase immobilization: biocatalyst characterization and activity in polyester synthesis. Polymers 8(12):416

    Article  CAS  Google Scholar 

  • Pandey G, Munguambe DM, Tharmavaram M, Rawtani D, Agrawal YK (2017) Halloysite nanotubes-An efficient ‘nano-support’for the immobilization of α-amylase. Appl Clay Sci 136:184–191

    Article  CAS  Google Scholar 

  • Paul R, Datta SC, Manjaiah KM, Bhattacharyya R (2015) Characterization of nanoclay-phosphatase complex with IR spectroscopy and electron microscopy. Clay Res 34:99–109

    Google Scholar 

  • Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37(11):2530–2542

    Article  CAS  Google Scholar 

  • Piao M, Zou D, Ren X, Gao S, Qin C, Piao Y (2019) High efficiency biotransformation of bisphenol A in a fluidized bed reactor using stabilized laccase in porous silica. Enzyme Microb Technol 126:1–8

    Google Scholar 

  • Poorakbar E, Shafiee A, Saboury AA, Rad BL, Khoshnevisan K, Ma’mani L, Derakhshankhah H, Ganjali MR, Hosseini M (2018) Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability. Process Biochem 71:92–100

    Article  CAS  Google Scholar 

  • Pu S, Zhang X, Yang C, Naseer S, Zhang X, Ouyang J, Li D, Yang J (2019) The effects of NaCl on enzyme encapsulation by zeolitic imidazolate frameworks-8. Enzyme Microb Technol 122:1–6

    Google Scholar 

  • Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31(4):215–216

    Article  CAS  Google Scholar 

  • Ramesh HP, Tharanathan RN (2003) Carbohydrates—the renewable raw materials of high biotechnological value. Crit Rev Biotechnol 23(2):149–173

    Article  CAS  Google Scholar 

  • Ricardi NC, de Menezes EW, Benvenutti EV, da Natividade Schöffer J, Hackenhaar CR, Hertz PF, Costa TMH (2018) Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology. Food Chem 246:343–350

    Google Scholar 

  • Rios NS, Pinheiro MP, dos Santos JCS, Fonseca TS, Lima LD, de Mattos MC, Freire DMG, da Silva Júnior IJ, Rodríguez-Aguado E, Goncalves LRB (2016) Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of (R, S)-Phenylethyl acetate. J Mol Catal B Enzym 133:246–258

    Google Scholar 

  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42(15):6290–6307

    Article  CAS  Google Scholar 

  • Rodriguez YE, Laitano MV, Pereira NA, López-Zavala AA, Haran NS, Fernández-Gimenez AV (2018) Exogenous enzymes in aquaculture: alginate and alginate-bentonite microcapsules for the intestinal delivery of shrimp proteases to Nile tilapia. Aquaculture 490:35–43

    Article  CAS  Google Scholar 

  • Rogers CDF, Glendinning S (1996) Modification of clay soils using lime. Lime stabilization. Thomas Telford, London, pp 99–112

    Google Scholar 

  • Sang L-C, Coppens M-O (2011) Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores. Phys Chem Chem Phys 13(14):6689–6698

    Article  CAS  Google Scholar 

  • Santana JL, Oliveira JM, Carvalho NB, Osório NMFM, Mattedi S, Freitas LS, Cavalcanti EB, Lima ÁS, Soares CMF (2018) Analysis of the performance of a packed bed reactor to production ethyl esters from crude vegetable oil using lipase immobilized in silica modified with protic ionic liquid. Química Nova 41(8):891–898

    Google Scholar 

  • Santos JCS, Barbosa O, Ortiz C, Berenguer‐Murcia A, Rodrigues RC, Fernandez‐Lafuente R (2015) Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 7(16):2413–2432

    Google Scholar 

  • Sarkar B, Rusmin R, Ugochukwu UC, Mukhopadhyay R, Manjaiah KM (2019) Modified clay minerals for environmental applications. In: Modified clay and zeolite nanocomposite materials. Elsevier, pp 113–127

    Google Scholar 

  • Sarrouh B, Santos TM, Miyoshi A, Dias R, Azevedo V (2012) Up-to-date insight on industrial enzymes applications and global market. J Bioprocess Biotech S 4(002)

    Google Scholar 

  • Satyanarayana KG (2004) Clay surfaces: fundamentals and applications, vol 1. Elsevier

    Google Scholar 

  • Schilke KF, Wilson KL, Cantrell T, Corti G, McIlroy DN, Kelly C (2010) A novel enzymatic microreactor with Aspergillus oryzae β-galactosidase immobilized on silicon dioxide nanosprings. Biotechnol Prog 26(6):1597–1605

    Article  CAS  Google Scholar 

  • Schöffer N, Jéssie M, Roberta C, Charqueiro DS, de Menezes EW, Costa TMH, Benvenutti EV, Rodrigues RC, Hertz PF (2017) Effects of immobilization, pH and reaction time in the modulation of α-, β-or γ-cyclodextrins production by cyclodextrin glycosyltransferase: Batch and continuous process. Carbohydr Polym 169, 41–49

    Google Scholar 

  • Secundo F (2013) Conformational changes of enzymes upon immobilisation. Chem Soc Rev 42(15):6250–6261

    Article  CAS  Google Scholar 

  • Sedaghat ME, Ghiaci M, Aghaei H, Soleimanian-Zad S (2009a) Enzyme immobilization. Part 3: immobilization of α-amylase on Na-bentonite and modified bentonite. Appl Clay Sci 46(2):125–130

    Google Scholar 

  • Sedaghat ME, Ghiaci M, Aghaei H, Soleimanian-Zad S (2009b). Enzyme immobilization. Part 4. immobilization of alkaline phosphatase on Na-sepiolite and modified sepiolite. Appl Clay Sci 46(2):131–135

    Google Scholar 

  • Seetharam G, Saville BA (2002) L-DOPA production from tyrosinase immobilized on zeolite. Enzyme Microb Technol 31(6):747–753

    Google Scholar 

  • Serefoglou E, Litina K, Gournis D, Kalogeris E, Tzialla AA, Pavlidis IV, Stamatis H, Maccallini E, Lubomska M, Rudolf P (2008) Smectite clays as solid supports for immobilization of β-glucosidase: synthesis, characterization, and biochemical properties. Chem Mater 20(12):4106–4115

    Article  CAS  Google Scholar 

  • Serralha FN, Lopes JM, Lemos F, Prazeres DMF, Aires-Barros MR, Cabral JMS, Ribeiro FR (1998) Zeolites as supports for an enzymatic alcoholysis reaction. J Mol Catal B Enzym 4(5–6):303–311

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307

    Article  CAS  Google Scholar 

  • Sheldon RA (2016) Engineering a more sustainable world through catalysis and green chemistry. J R Soc Interf 13(116):20160087

    Article  Google Scholar 

  • Shi X, Xu J, Lu C, Wang Z, Xiao W, Zhao L (2019) Immobilization of high temperature-resistant GH3 β-glucosidase on a magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8/zeolitic imidazolate framework. Enzyme Microb Technol 129:109347

    Google Scholar 

  • Sillu D, Agnihotri S (2020) Cellulase immobilization on to magnetic halloysite nanotubes: enhanced enzyme activity and stability with high cellulose saccharification. ACS Sustain Chem Eng 8, 900−913

    Google Scholar 

  • Sinegani AAS, Emtiazi G, Shariatmadari H (2005) Sorption and immobilization of cellulase on silicate clay minerals. J Colloid Interface Sci 290(1):39–44

    Google Scholar 

  • Singh S, Tuteja SK, Sillu D, Deep A, Suri CR (2016) Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim Acta 183(5):1729–1738

    Google Scholar 

  • Sinha R, Khare SK (2015) Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis. Bioprocess Biosyst Eng 38(4):739–748

    Google Scholar 

  • Songurtekin D, Yalcinkaya EE, Ag D, Seleci M, Demirkol DO, Timur S (2013) Histidine modified montmorillonite: Laccase immobilization and application to flow injection analysis of phenols. Appl Clay Sci 86:64–69

    Article  CAS  Google Scholar 

  • Spahn C, Minteer SD (2008) Enzyme immobilization in biotechnology. Recent Patents Eng 2(3):195–200

    Article  CAS  Google Scholar 

  • Sun J, Yendluri R, Liu K, Guo Y, Lvov Y, Yan X (2017) Enzyme-immobilized clay nanotube–chitosan membranes with sustainable biocatalytic activities. Phys Chem Chem Phys 19(1):562–567

    Article  CAS  Google Scholar 

  • Talebi M, Vaezifar S, Jafary F, Fazilati M, Motamedi S (2016) Stability improvement of immobilized α-amylase using nano pore zeolite. Iran J Biotechnol 14(1):33

    Google Scholar 

  • Tanasković SJ, Jokić B, Grbavčić S, Drvenica I, Prlainović N, Luković N, Knežević-Jugović Z (2017) Immobilization of Candida antarctica lipase B on kaolin and its application in synthesis of lipophilic antioxidants. Appl Clay Sci 135:103–111

    Google Scholar 

  • Tegl G, Stagl V, Mensah A, Huber D, Somitsch W, Grosse-Kracht S, Guebitz GM (2018) The chemo enzymatic functionalization of chitosan zeolite particles provides antioxidant and antimicrobial properties. Eng Life Sci 18(5):334–340

    Article  CAS  Google Scholar 

  • Tripathi A, Sami H, Jain SR, Viloria-Cols M, Zhuravleva N, Nilsson G, Jungvid H, Kumar A (2010) Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production. Enzyme Microb Technol 47:44–51

    Google Scholar 

  • Tripathi A, Melo JS (2019) Self-assembled biogenic melanin modulated surface chemistry of biopolymers-colloidal silica composite porous matrix for the recovery of uranium. J Appl Polym Sci 136(5):46937

    Article  CAS  Google Scholar 

  • Tully J, Yendluri R, Lvov Y (2016) Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules 17(2):615–621

    Google Scholar 

  • Tyagi VK, Lo S-L (2013) Sludge: a waste or renewable source for energy and resources recovery? Renew Sustain Energy Rev 25:708–728

    Article  CAS  Google Scholar 

  • Tzialla AA, Kalogeris E, Enotiadis A, Taha AA, Gournis D, Stamatis H (2009) Effective immobilization of Candida antarctica lipase B in organic-modified clays: application for the epoxidation of terpenes. Mater Sci Eng, B 165(3):173–177

    Article  CAS  Google Scholar 

  • Valikhani D, Bolivar JM, Viefhues M, McIlroy DN, Vrouwe EX, Nidetzky B (2017) A spring in performance: silica nanosprings boost enzyme immobilization in microfluidic channels. ACS Appl Mater Interfaces 9(40):34641–34649

    Google Scholar 

  • Verri F, Diaz U, Macario A, Corma A, Giordano G (2016) Optimized hybrid nanospheres immobilizing Rhizomucor miehei lipase for chiral biotransformation. Process Biochem 51(2):240–248

    Google Scholar 

  • Wang J, Yu S, Feng F, Lu L (2019) Simultaneous purification and immobilization of laccase on magnetic zeolitic imidazolate frameworks: recyclable biocatalysts with enhanced stability for dye decolorization. Biochem Eng J 107285

    Google Scholar 

  • Wang Q, Peng L, Li G, Zhang P, Li D, Huang F, Wei Q (2013) Activity of laccase immobilized on TiO2-montmorillonite complexes. Int J Mol Sci 14(6):12520–12532

    Google Scholar 

  • Wang Y, Caruso F (2004) Enzyme encapsulation in nanoporous silica spheres. Chem Commun 13:1528–1529

    Article  CAS  Google Scholar 

  • Wang Y, Caruso F (2005) Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem Mater 17(5):953–961

    Article  CAS  Google Scholar 

  • Wang Y, Liu C, Zhang Y, Zhang B, Liu J (2015) Facile fabrication of flowerlike natural nanotube/layered double hydroxide composites as effective carrier for lysozyme immobilization. ACS Sustain Chem Eng 3(6):1183–1189

    Article  CAS  Google Scholar 

  • Wannerberger K, Welin-Klintström S, Arnebrant T (1997) Activity and adsorption of lipase from Humicola lanuginosa on surfaces with different wettabilities. Langmuir 13(4):784–790

    Google Scholar 

  • Washmon-Kriel L, Jimenez VL, Balkus Jr KJ (2000) Cytochrome c immobilization into mesoporous molecular sieves. J Mol Catal B Enzym 10(5):453–469

    Article  CAS  Google Scholar 

  • Weber E, Sirim D, Schreiber T, Thomas B, Pleiss J, Hunger M, Gläser R, Urlacher VB (2010) Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diameters. J Mol Catal B Enzym 64(1–2):29–37

    Article  CAS  Google Scholar 

  • Wu LM, Zeng QH, Ding R, Tu PP, Xia MZ (2019) Fe3O4/Acid activated montmorillonite/cellulase composites: Preparation, structure, and enzyme activity. Appl Clay Sci 179:105129

    Google Scholar 

  • Wu X, Ge J, Yang C, Hou M, Liu Z (2015) Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chem Commun 51(69):13408–13411

    Article  CAS  Google Scholar 

  • Xiao X, Siepenkoetter T, Whelan R, Salaj-Kosla U, Magner E (2018) A continuous fluidic bioreactor utilising electrodeposited silica for lipase immobilisation onto nanoporous gold. J Electroanal Chem 812:180–185

    Article  CAS  Google Scholar 

  • Xing G-W, Li X-W, Tian G-L, Ye Y-H (2000) Enzymatic peptide synthesis in organic solvent with different zeolites as immobilization matrixes. Tetrahedron 56(22):3517–3522

    Article  CAS  Google Scholar 

  • Xu W, Sun Z, Meng H, Han Y, Wu J, Xu J, Xu Y, Zhang X (2018) Immobilization of cellulase proteins on zeolitic imidazolate framework (ZIF-8)/polyvinylidene fluoride hybrid membranes. New J Chem 42(21):17429–17438

    Article  CAS  Google Scholar 

  • Yagiz F, Kazan D, Akin AN (2007) Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chem Eng J 134(1–3), 262–267

    Google Scholar 

  • Yang Z, Liao Y, Fu X, Zaporski J, Peters S, Jamison M, Liu Y, Wullschleger SD, Graham DE, Gu B (2019) Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by β-glucosidase. Sci Total Environ 686:1194–1201

    Article  CAS  Google Scholar 

  • Yao J, Wang Q, Wang Y, Zhang Y, Zhang B, Zhang H (2015) Immobilization of laccase on chitosan–halloysite hybrid porous microspheres for phenols removal. Desalination Water Treat 55(5):1293–1301

    Google Scholar 

  • Yuan SP, Wang JG, Li YW, Jiao H (2002) Brønsted acidity of isomorphously substituted ZSM-5 by B, Al, Ga, and Fe. Density functional investigations. J Phys Chem A 106(35):8167–8172

    Google Scholar 

  • Zang L, Qiu J, Mo H, Yang C, Sakai E (2015) 113 study on immobilization of cellulase on attapulgite nanoclay. In: Paper presented at the the proceedings of autumn conference of Tohoku Branch 2015, vol 51

    Google Scholar 

  • Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8(2):92

    Article  CAS  Google Scholar 

  • Zhai R, Zhang B, Liu L, Xie Y, Zhang H, Liu J (2010) Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal Commun 12(4):259–263

    Article  CAS  Google Scholar 

  • Zhang B, Weng Y, Xu H, Mao Z (2012) Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol 93(1):61–70

    Article  CAS  Google Scholar 

  • Zhao L, Xu C, Gao S, Shen B (2010) Effects of concentration on the alkali-treatment of ZSM-5 zeolite: a study on dividing points. J Mater Sci 45(19):5406–5411

    Article  CAS  Google Scholar 

  • Zhao XS, Bao XY, Guo W, Lee FY (2006) Immobilizing catalysts on porous materials. Mater Today 9(3):32–39

    Article  CAS  Google Scholar 

  • Zhou C-H, Shen Z-F, Liu L-H, Liu S-M (2011) Preparation and functionality of clay-containing films. J Mater Chem 21(39):15132–15153

    Article  CAS  Google Scholar 

  • Zhou CH, Keeling J (2013) Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Appl Clay Sci 74:3–9

    Article  CAS  Google Scholar 

  • Zhou Z, Hartmann M (2013) Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev 42(9):3894–3912

    Article  CAS  Google Scholar 

  • Zhu Y, Kaskel S, Shi J, Wage T, van Pée K-H (2007) Immobilization of Trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem Mater 19(26):6408–6413

    Article  CAS  Google Scholar 

  • Zucca P, Sanjust E (2014) Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19(9):14139–14194

    Article  CAS  Google Scholar 

  • Zulfiqar S, Ahmad Z, Ishaq M, Sarwar MI (2009) Aromatic–aliphatic polyamide/montmorillonite clay nanocomposite materials: Synthesis, nanostructure and properties. Mater Sci Eng A 525(1–2):30–36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Science and Technology, India (DST-SERB), under the project Grant YSS/2015/001599, dated 23 March 2016 in Engineering Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar Agnihotri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sillu, D., Kaushik, Y., Agnihotri, S. (2021). Immobilization of Enzymes onto Silica-Based Nanomaterials for Bioprocess Applications. In: Tripathi, A., Melo, J.S. (eds) Immobilization Strategies . Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7998-1_11

Download citation

Publish with us

Policies and ethics