Skip to main content
Log in

Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report a high-performance amorphous CoMoS4 nanosheet array on carbon cloth (CoMoS4 NS/CC), prepared by hydrothermal treatment of a Co(OH)F nanosheet array on a carbon cloth (Co(OH)F NS/CC) in (NH4)2MoS4 solution. As a three-dimensional HER electrode, CoMoS4 NS/CC exhibits remarkable activity in 1.0 M phosphate buffer saline (pH 7), only requiring an overpotential of 183 mV to drive a geometrical current density of 10 mA·cm–2. This overpotential is 140 mV lower than that for Co(OH)F NS/CC. Notably, this electrode also shows outstanding electrochemical durability and nearly 100% Faradaic efficiency. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    Article  Google Scholar 

  2. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  3. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  4. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Article  Google Scholar 

  5. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  6. Le Goff, A.; Artero, V.; Jousselme, B.; Tran, P. D.; Guillet, N.; Métayé, R.; Fihri, A.; Palacin, S.; Fontecave, M. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 2009, 326, 1384–1387.

    Article  Google Scholar 

  7. Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, AM.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346–3354.

    Article  Google Scholar 

  8. Pu, Z. H.; Luo, Y. L.; Asiri, A. M.; Sun, X. P. Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces 2016, 8, 4718–4723.

    Article  Google Scholar 

  9. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0−14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  Google Scholar 

  10. Tang, C.; Gan, L. F.; Zhang, R.; Lu, W. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P.; Wang, J.; Chen, L. Ternary FexCo1−xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett. 2016, 16, 6617–6621.

    Article  Google Scholar 

  11. Losse, S.; Vos, J. G.; Rau, S. Catalytic hydrogen production at cobalt centres. Coord. Chem. Rev. 2010, 254, 2492–2504.

    Article  Google Scholar 

  12. Liu, T. T.; Ma, X.; Liu, D. N.; Hao, S.; Du, G.; Ma, Y. J.; Asiri, A. M.; Sun, X. P.; Chen, L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2017, 7, 98–102.

    Article  Google Scholar 

  13. Li, K. D.; Zhang, J. F.; Wu, R.; Yu, Y. F.; Zhang, B. Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv. Sci. 2016, 3, 1500426.

    Article  Google Scholar 

  14. Sun, Y. J.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P. D.; Chang, C. J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 2013, 135, 17699–17702.

    Article  Google Scholar 

  15. Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.

    Article  Google Scholar 

  16. Morales-Guio, C. G.; Hu, X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671−2681.

    Article  Google Scholar 

  17. Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

    Article  Google Scholar 

  18. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

    Article  Google Scholar 

  19. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. A cost-Effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

    Article  Google Scholar 

  20. Xie, L. S.; Zhang, R.; Cui, L.; Liu, D. N.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew. Chem., Int. Ed. 2017, 56, 1064–1068.

    Article  Google Scholar 

  21. Ren, X.; Ge, R. X.; Zhang, Y.; Liu, D. N.; Wu, D.; Sun, X.; Du B.; Wei, Q. Cobalt–borate nanowire array as a highperformance catalyst for oxygen evolution reaction in nearneutral media. J. Mater. Chem. A 2017, 5, 7291–7294.

    Article  Google Scholar 

  22. Ji, X. Q.; Cui, L.; Liu, D. N.; Hao, S.; Liu, J. Q.; Qu, F. L.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. A nickel-borate nanoarray: A highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chem. Commun. 2017, 53, 3070–3073.

    Article  Google Scholar 

  23. Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: An earthabundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small 2017, 13, 1700394.

    Article  Google Scholar 

  24. Ge, R. X.; Ren, X.; Qu, F. L.; Liu, D. N.; Ma, M.; Hao, S.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. P. Three-dimensional nickel-borate nanosheets array for efficient oxygen evolution at near-neutral pH. Chem.—Eur. J. 2017, 23, 6959–6963.

    Article  Google Scholar 

  25. Zhu, G. L.; Ge, R. X.; Qu, F. L.; Du, G.; Asiri, A. M.; Yao, Y. D.; Sun, X. P. In situ surface derivation of an Fe–Co–Bi layer on an Fe-doped Co3O4 nanoarray for eficient water oxidation electrocatalysis under near-neutral conditions. J. Mater. Chem. A 2017, 5, 6388–6392.

    Article  Google Scholar 

  26. Zhang, R.; Tang, C.; Kong, R. M.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. P. Al-doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity. Nanoscale 2017, 9, 4793–4800.

    Article  Google Scholar 

  27. Sun, X.; Guo, Y. Q.; Wu, C. Z.; Xie, Y. The hydric effect in inorganic nanomaterials for nanoelectronics and energy applications. Adv. Mater. 2015, 27, 3850–3867.

    Article  Google Scholar 

  28. Bi, W. T.; Hu, Z. P.; Li, X. G.; Wu, C. Z.; Wu, J. C.; Wu, Y. B.; Xie, Y. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors. Nano Res. 2015, 8, 193–200.

    Article  Google Scholar 

  29. Xu, R.; Wu, R.; Shi, Y. M.; Zhang, J. F.; Zhang, B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and selfsupported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 2016, 24, 103–110.

    Article  Google Scholar 

  30. Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    Article  Google Scholar 

  31. Wu, R.; Zhang, J. F.; Shi, Y. M.; Liu, D. L.; Zhang, B. Metallic WO2−carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 6983−6986.

    Article  Google Scholar 

  32. Xia, X. H.; Zhu, C. R.; Luo, J. S.; Zeng, Z. Y.; Guan, C.; Ng, C. F.; Zhang, H.; Fan, H. J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766–773.

    Article  Google Scholar 

  33. Wang, H.; Zhuo, S. F.; Liang, Y.; Han, X. L.; Zhang, B. General self-template synthesis of transition-metal oxide and chalcogenide mesoporous nanotubes with enhanced electrochemical performances. Angew. Chem., Int. Ed. 2016, 55, 9055–9059.

    Article  Google Scholar 

  34. Zhu, L. P.; Wen, Z.; Mei, W. M.; Li, Y. G.; Ye, Z. Z. Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO3)0.5(OH)·0.11H2O and their electrochemical properties. J. Phys. Chem. C 2013, 117, 20465−20473.

    Article  Google Scholar 

  35. Jiang, J.; Liu, J. P.; Huang, X. T.; Li, Y. Y.; Ding, R.M.; Ji, X. X.; Hu, Y. Y.; Chi, Q. B.; Zhu, Z. H. General synthesis of large-scale arrays of one-dimensional nanostructured Co3O4 directly on heterogeneous substrates. Cryst. Growth Des. 2010, 10, 70−75.

    Article  Google Scholar 

  36. Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  37. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  38. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germaniu. Phys. Rev. B 1994, 49, 14251–14269.

    Article  Google Scholar 

  39. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

    Google Scholar 

  40. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  41. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  42. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  43. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  44. Nøskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolutio. J. Electrochem. Soc. 2005, 152, J23–J26.

    Article  Google Scholar 

  45. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661−4672.

    Article  Google Scholar 

  46. Gu, D.; Jia, C.-J.; Weidenthaler, C.; Bongard, H.-J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 2015, 137, 11407−11418.

    Article  Google Scholar 

  47. Martin-Aranda, R. M.; Portela, M. F.; Madeira, L. M.; Freire, F.; Oliveira, M. Effect of alkali metal promoters on nickel molybdate catalysts and its relevance to the selective oxidation of butane. Appl. Catal. A: Gen. 1995, 127, 201–217.

    Article  Google Scholar 

  48. Ozkar, S.; Ozin, G. A.; Prokopowicz, R. A. Photooxidation of hexacarbonylmolybdenum(0) in sodium zeolite Y to yield redox-interconvertible molybdenum(VI) oxide and molybdenum(IV) oxide monomers. Chem. Mater. 1992, 4, 1380–1388.

    Article  Google Scholar 

  49. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

    Article  Google Scholar 

  50. Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702–5707.

    Article  Google Scholar 

  51. Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372–4376.

    Article  Google Scholar 

  52. Gu, H. H.; Huang, Y. P.; Zuo, L. Z.; Fan, W.; Liu, T. X. Electrospun carbon nanofiber@CoS2 core/sheath hybrid as an efficient all-pH hydrogen evolution electrocatalyst. Inorg. Chem. Front. 2016, 3, 1280–1288.

    Article  Google Scholar 

  53. Tran, P. D.; Chiam, S. Y.; Boix, P. P.; Ren, Y.; Pramana, S. S.; Fize, J.; Artero V.; Barber, J. Novel cobalt/nickel-tungstensulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 2013, 6, 2452–2459.

    Article  Google Scholar 

  54. Shin, S.; Jin, Z. Y.; Kwon, D. H.; Bose, R.; Min, Y.-S. High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. Langmuir 2015, 31, 1196–1201.

    Article  Google Scholar 

  55. Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.

    Article  Google Scholar 

  56. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    Article  Google Scholar 

  57. Wang, J. M.; Ma, X.; Qu, F. L.; Asiri, A. M.; Sun, X. P. Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation. Inorg. Chem. 2017, 56, 1041–1044.

    Article  Google Scholar 

  58. Jiang, J.; Gao, M. R.; Sheng, W. C.; Yan, Y. S. Hollow chevrel-phase NiMo3S4 for hydrogen evolution in alkaline electrolytes. Angew. Chem., Int. Ed. 2016, 55, 15240–15245.

    Article  Google Scholar 

  59. Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Threedimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015–6021.

    Article  Google Scholar 

  60. Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S. H.; Lee, J.-S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.

    Article  Google Scholar 

  61. Karunadasa, H. I.; Chang, C. J.; Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 2010, 464, 1329–1333.

    Article  Google Scholar 

  62. Ren, X.; Wang, W. Y.; Ge, R. X.; Hao, S.; Qu, F. L.; Du, G.; Asiri, A. M.; Wei, Q.; Chen, L.; Sun, X. P. An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chem. Commun. 2017, 53, 9000–9003.

    Article  Google Scholar 

  63. Li, H. M.; Qian, X.; Zhu, C. L.; Jiang, X. C.; Shao, L.; Hou, L. X. Template synthesis of CoSe2/Co3Se4 nanotubes: Tuning of their crystal structures for photovoltaics and hydrogen evolution in alkaline medium. J. Mater. Chem. A 2017, 5, 4513–4526.

    Article  Google Scholar 

  64. Wang, W. Y.; Yang, L.; Qu, F. L.; Liu, Z. A.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen L.; Sun X. P. A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. J Mater. Chem. A 2017, 5, 16585–16589.

    Article  Google Scholar 

  65. Shao, L.; Qian, X.; Wang, X. Y.; Li, H. M.; Yan, R. C.; Hou, L. X. Low-cost and highly efficient CoMoS4/NiMoS4-based electrocatalysts for hydrogen evolution reactions over a wide pH range. Electrochim. Acta 2016, 213, 236–243.

    Article  Google Scholar 

  66. Yu, L.; Xia, B. Y.; Wang, X.; Lou, X. W. General formation of M–MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 2016, 28, 92–97.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Scientific Instrument and Equipment Development Project of China (No. 21627809), the National Natural Science Foundation of China (Nos. 21375047, 21377046, 21405059, 21575137, 21575050, and 21601064), Natural Science Foundation of Shandong Province (Nos. ZR2016JL013 and ZR2016BQ10), Graduate Innovation Foundation of University of Jinan (No. YCXB15004), and the Special Foundation for Taishan Scholar Professorship of Shandong Province (No. ts20130937).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Wei or Liang Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Wu, D., Ge, R. et al. Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH. Nano Res. 11, 2024–2033 (2018). https://doi.org/10.1007/s12274-017-1818-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1818-6

Keywords

Navigation