Skip to main content
Log in

Vanadium oxide nanocomposite as electrode materials for lithium-ion batteries with high specific discharge capacity and long cycling life

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a facile and low-cost method is used to elaborate V2O5/reduced graphene oxide (rGO) nanocomposites as cathode materials for lithium-ion batteries (LIBs). The structure, composition, and morphology of the hydrothermal V2O5/rGO composite powders are characterized by XRD, Raman spectroscopy, SEM, and TEM while their electrochemical performance was evaluated using cyclic voltammetry (CV) and charge/discharge studies. The V2O5/rGO cathode exhibits improved electrochemical performance in terms of specific capacitance, reversibility, and stability compared to single-component V2O5. Electrochemical characterization reveals that the new composite cathode combined the homemade V2O5 powders and graphene demonstrated high specific discharge capacity of 280 mAh g−1 at 50 mA g−1 and good stability upon 1000 cycles. Higher electrochemical capacity and stability of the new composite cathode are mainly ascribed to a cooperative effect between the reduced graphene with good electrical conductivity and the unique nano-sized V2O5 spheres with short diffusion pathways for lithium-ion diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang J, Wang Y, Zhu C, Liu B (2022) Photoinduced rechargeable lithium-ion battery. ACS Appl Mater Interfaces 14(3):4071–4078. https://doi.org/10.1021/acsami.1c20359

    Article  CAS  Google Scholar 

  2. Benedek P, Forslund OK, Nocerino E, Yazdani N, Matsubara N, Sassa Y, Jurànyi F, Medarde M, Telling M, Månsson M, Wood V (2020) Quantifying diffusion through interfaces of lithium-ion battery active materials. ACS Appl Mater Interfaces 12(14):16243–16249. https://doi.org/10.1021/acsami.9b21470

    Article  CAS  Google Scholar 

  3. Yang H, Naveed A, Li Q, Guo C, Chen J, Lei J, Yang J, Nuli Y, Wang J (2018) Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Mater 15:299–307. https://doi.org/10.1016/j.ensm.2018.05.014

    Article  Google Scholar 

  4. Li JX, Zhang J, Zhao Y, Zhao P, Xie Q, Zhang S (2022) Heterostructured δ-MnO2/Fe2O3 nanoarrays layer-by-layer assembled on stainless-steel mesh as free-standing anodes for lithium ion batteries towards enhanced performance. Materials Today Communications 32:104034. https://doi.org/10.1016/j.mtcomm.2022.104034

    Article  CAS  Google Scholar 

  5. Dai X, Zhang M, Li T, Cui X, Shi Y, Zhu X, Wangyang P, Yang D, Li J (n.d.) Effect of current on electrodeposited MnO2 as supercapacitor and lithium-ion battery electrode. Vacuum 195(52022):110692. https://doi.org/10.1016/j.vacuum.2021.110692

  6. Zhang N, Guo G, He B, Zhu J, Wu J, Qiu J (2020) Synthesis and research of MnO2–NiO composite as lithium-ion battery anode using spent Zn–Mn batteries as manganese source. J Alloy Compd 838:155578. https://doi.org/10.1016/j.jallcom.2020.155578

    Article  CAS  Google Scholar 

  7. Ferguson D, Searles DJ, Hankel M (2017) Biphenylene and phagraphene as lithium ion battery anode materials. ACS Appl Mater Interfaces 9(24):20577–20584

    Article  CAS  Google Scholar 

  8. Elia GA, Wang J, Bresser D, Li J, Scrosati B, Passerini S, Hassoun J (2014) A new, high energy Sn–C/Li[Li0.2Ni0.4/3Co0.4/3Mn1.6/3]O2 lithium-ion battery. ACS Appl Mater Interfaces 6(15):12956–12961. https://doi.org/10.1021/am502884y

  9. C. A. Bonino, L. Ji, Z. Lin, Ozan, Toprakci, X. Zhang, S. A. Khan, 2011 Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes, ACS Applied Materials & Interfaces 3 7 2534-2542. https://doi.org/10.1021/am2004015

  10. Zahn R, Lagadec MF, Hess M, Wood V (2016) Improving ionic conductivity and lithium-ion transference number in lithium-ion battery separators. ACS Appl Mater Interfaces 8(48):32637–32642. https://doi.org/10.1021/acsami.6b12085

    Article  CAS  Google Scholar 

  11. Nam KH, Hwa Y, Park C-M (2020) Zinc phosphides as outstanding sodium-ion battery anodes. ACS Appl Mater Interfaces 12(13):15053–15062. https://doi.org/10.1021/acsami.9b21803

    Article  CAS  Google Scholar 

  12. Kalisvaart WP, Olsen BC, Luber EJ, Buriak JM (2019) Sb–Si alloys and multilayers for sodium-ion battery anodes. ACS Applied Energy Materials 2(3):2205–2213. https://doi.org/10.1021/acsaem.8b02231

    Article  CAS  Google Scholar 

  13. Liu Y, Liu J, Wu Y, Bin D, Bo SH, Wang Y, Xia Y (2018) Na1.68H0.32Ti2O3SiO4·1.76H2O as a low-potential anode material for sodium-ion battery. ACS App Energy Mater 1(10):5151–5157. https://doi.org/10.1021/acsaem.8b01412

  14. Morgan LM, Islam MM, Yang H, O’Regan K, Patel AN, Ghosh A, Kendrick E, Marinescu M, Offer GJ, Morgan BJ, Islam MS, Edge J, Walsh A (2022) From atoms to cells: multiscale modeling of LiNixMnyCozO2 cathodes for li-ion batteries. ACS Energy Lett 7(1):108–122. https://doi.org/10.1021/acsenergylett.1c02028

    Article  CAS  Google Scholar 

  15. Zhang X, Duan L, Zhang X, Li X, Lü W (2020) Preparation of Cu2S@rGO hybrid composites as anode materials for enhanced electrochemical properties of lithium ion battery. J Alloy Compd 816:152539. https://doi.org/10.1016/j.jallcom.2019.152539

    Article  CAS  Google Scholar 

  16. Ding GC, Zhu LM, Yang Q, Xie LL, Cao XY, Wang YL, Liu JP, Yang XL (2020) NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Met 39:865–873. https://doi.org/10.1007/s12598-020-01452-y

    Article  CAS  Google Scholar 

  17. Zhu L, Li W, Xie L, Yang Q, Cao X (2019) Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. Chem Eng J 372:1056–1065. https://doi.org/10.1016/j.cej.2019.05.009

    Article  CAS  Google Scholar 

  18. Zhou T, Zhu L, Xie L, Han Q, Yang X, Cao X, Ma J (2022) New insight on K2Zn2V10O28 as an advanced cathode for rechargeable aqueous zinc-ion batteries. Small 18:2107102. https://doi.org/10.1002/smll.202107102

    Article  CAS  Google Scholar 

  19. Griffith KJ, Harada Y, Egusa S, Ribas RM, Monteiro RS, Von Dreele RB, Cheetham AK, Cava RJ, Grey CP, Goodenough JB (2021) Titanium niobium oxide: from discovery to application in fast-charging lithium-ion batteries. Chem Mater 33(1):4–18. https://doi.org/10.1021/acs.chemmater.0c02955

    Article  CAS  Google Scholar 

  20. Liang S, Hu Y, Nie Z, Huang H, Chen T, Pana A, Cao G (2015) Template-free synthesis of ultra-largeV2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy 13:58–66. https://doi.org/10.1016/j.nanoen.2015.01.049

    Article  CAS  Google Scholar 

  21. Zhang X, Suna X, Li X, Hu X, Cai S, Zheng C (2021) Recent progress in rate and cycling performance modifications of vanadium oxides cathode for lithium-ion batteries. J Energy Chem 59:343–363. https://doi.org/10.1016/j.jechem.2020.11.022

    Article  CAS  Google Scholar 

  22. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10(11):4750–4755. https://doi.org/10.1021/nl103343w

    Article  CAS  Google Scholar 

  23. Zeng H, Liu D, Zhang Y, See KA, Jun YS, Wu G, Gerbec JA, Ji X, Stucky GD (2015) Nanostructured Mn-doped V2O5 cathode material fabricated from layered vanadium jarosite. Chem Mater 27(21):7331–7336. https://doi.org/10.1021/acs.chemmater.5b02840

    Article  CAS  Google Scholar 

  24. Lou X, Zhang Y (2011) Synthesis of LiFePO4/C cathode materials with both high-rate capability and high tap density for lithium-ion batteries. J Mater Chem 21:4156–4160

    Article  CAS  Google Scholar 

  25. Sim CM, Choi SH, Kang YC (2013) Superior electrochemical properties of LiMn2O4 yolk−shell powders prepared by a simple spray pyrolysis process. Chem Commun 49:5978–5980

    Article  CAS  Google Scholar 

  26. D. Chao, X. Xia, J. Liu, Z. Fan, C. F. Ng, J. Lin, H. Zhang, Z. X. Shen, H. J. Fan, 2017 Lithium-ion batteries: a V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Energy Mater. 1602545. https://doi.org/10.1002/aenm.201602545.

  27. Pan AQ, Zhang JG, Nie ZM, Cao GZ, Arey BW, Li GS, Liang SQ, Liu J (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20:9193. https://doi.org/10.1039/C0JM01306D

    Article  CAS  Google Scholar 

  28. Zhai BT, Liu H, Li H, Fang X, Liao M, Li L, Zhou H, Koide Y, Bando Y, Golberg D (2010) Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv Mater 22:2547–2552. https://doi.org/10.1002/adma.200903586

    Article  CAS  Google Scholar 

  29. Wang DH, Choi DW, Li J, Yang ZG, Nie ZM, Kou R, Hu DH, Wang CM, Saraf LV, Zhang JG, Aksay IA, Liu J (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907. https://doi.org/10.1021/nn900150y

    Article  CAS  Google Scholar 

  30. Yang SB, Feng XL, Ivanovici S, Mullen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408. https://doi.org/10.1002/anie.201003485

    Article  CAS  Google Scholar 

  31. Wang HL, Cui LF, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai HJ (2010) Mn3O4−graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978. https://doi.org/10.1021/ja105296a

    Article  CAS  Google Scholar 

  32. Rama N, Rao MSR (2010) Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique. Solid State Commun 150:1041–1044. https://doi.org/10.1016/j.ssc.2010.01.049

    Article  CAS  Google Scholar 

  33. De S, De ADSK (2007) Electrical transport and optical properties of vanadyl phosphate-polyaniline nanocomposites. J Phys Chem Solids 68:66–72. https://doi.org/10.1016/j.jpcs.2006.09.001

    Article  CAS  Google Scholar 

  34. Zhang Y, Wang Y, Xiong Z, Hu Y, Song W, Huang Q, Cheng X, Chen LQ, Sun C, Gu H (2017) V2O5 nanowire composite paper as a high-performance lithium-ion battery cathode. ACS Omega 2:793–799. https://doi.org/10.1021/acsomega.7b00037

    Article  CAS  Google Scholar 

  35. Zhao H, Pan L, Xing S, Luo J, Xu J (2013) Vanadium oxidesereduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. J Power Sources 222:21–31. https://doi.org/10.1016/j.jpowsour.2012.08.036

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the deanship of scientific research at University of Tabuk for funding this work through research group number RGP S-1443–0280.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Moulahi or Issam Mjejri.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsherari, S.A., Janene, F., Moulahi, A. et al. Vanadium oxide nanocomposite as electrode materials for lithium-ion batteries with high specific discharge capacity and long cycling life. Ionics 29, 61–70 (2023). https://doi.org/10.1007/s11581-022-04811-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04811-0

Keywords

Navigation