Skip to main content
Log in

TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this article, we introduce Tsinghua Global Minimum (TGMin) as a new program for the global minimum searching of geometric structures of gas-phase or surface-supported atomic clusters, and the constrained basin-hopping (BH) algorithm implemented in this program. To improve the efficiency of the BH algorithm, several types of constraints are introduced to reduce the vast search space, including constraints on the random displacement step size, displacement of low-coordination atoms, and geometrical structure adjustment after displacement. The ultrafast shape-recognition (USR) algorithm and its variants are implemented to identify duplicate structures during the global minimum search. In addition to the Metropolis acceptance criterion, we also implemented a morphology-based constraint that confines the global minimum search to a specific type of morphology, such as planar or non-planar structures, which offers a strict divide-and-conquer strategy for the BH algorithm. These improvements are implemented in the TGMin program, which was developed over the past decade and has been used in a number of publications. We tested our TGMin program on global minimum structural searches for a number of metal and main-group clusters including C60, Au20 and B20 clusters. Over the past five years, the TGMin program has been used to determine the global minimum structures of a series of boron atomic clusters (such as [B26], [B28], [B30], [B35], [B36], [B39], [B40], [MnB16], [CoB18], [RhB18], and [TaB20]), metal-containing clusters Li n (n = 3–20), Au9(CO)8 + and [Cr6O19]2–, and the oxide-supported metal catalyst Au7/γ-Al2O3, as well as other isolated and surface-supported atomic clusters. In this article we present the major features of TGMin program and show that it is highly efficient at searching for global-minimum structures of atomic clusters in the gas phase and on various surface supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.

    Article  Google Scholar 

  2. Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.

    Article  Google Scholar 

  3. Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO 2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Res. 2010, 3, 676–684.

    Article  Google Scholar 

  4. Kirkpatric, S.; Gelatt, C. D., Jr.; Vecchi, M. P. Optimization by simulated annealing. Science 1983, 220, 671–680.

    Article  Google Scholar 

  5. Wales, D. J.; Doye, J. P. K. Global optimization by basinhopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 1997, 101, 5111–5116.

    Article  Google Scholar 

  6. White, R. P.; Mayne, H. R. An investigation of two approaches to basin hopping minimization for atomic and molecular clusters. Chem. Phys. Lett. 1998, 289, 463–468.

    Article  Google Scholar 

  7. Liberti, L.; Maculan, N. Global Optimization; Springer: New York, 2006.

    Book  Google Scholar 

  8. Deaven, D. M.; Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 1995, 75, 288–291.

    Article  Google Scholar 

  9. Daven, D. M.; Tit, N.; Morris, J. R.; Ho, K. M. Structural optimization of Lennard–Jones clusters by a genetic algorithm. Chem. Phys. Lett. 1996, 256, 195–200.

    Article  Google Scholar 

  10. Johnston, R. L.; Mortimer-Jones, T. V.; Roberts, C.; Darby, S.; Manby, F. R. Application of genetic algorithms in nanoscience: Cluster geometry optimization. In Lecture Notes in Computer Science; Cagnoni, S.; Gottlieb, J.; Hart, E.; Middendorf, M.; Raidl, G. R., Eds.; Springer: Berlin Heidelberg, 2002; pp 92–101.

    Google Scholar 

  11. Johnston, R. L. Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Trans. 2003, 4193–4207.

    Google Scholar 

  12. Alexandrova, A. N.; Boldyrev, A. I. Search for the Lin 0/+1/–1 (n = 5–7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. J. Chem. Theory Comput. 2005, 1, 566–580.

    Article  Google Scholar 

  13. Alexandrova, A. N. H·(H2O)n clusters: Microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA). J. Phys. Chem. A 2010, 114, 12591–12599.

    Article  Google Scholar 

  14. Glass, C. W.; Oganov, A. R.; Hansen, N. USPEX: Evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713–720.

    Article  Google Scholar 

  15. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 2013, 184, 1172–1182.

    Article  Google Scholar 

  16. Bera, P. P.; Schleyer, P. V. R.; Schaefer, H. F., III. Periodane: A wealth of structural possibilities revealed by the kick procedure. Int. J. Quantum Chem. 2007, 107, 2220–2223.

    Google Scholar 

  17. Zhai, H. C.; Ha, M.-A.; Alexandrova, A. N. Affck: Adaptive force-field-assisted ab initio coalescence kick method for global minimum search. J. Chem. Theory Comput. 2015, 11, 2385–2393.

    Article  Google Scholar 

  18. Addicoat, M. A.; Metha, G. F. Kick: Constraining a stochastic search procedure with molecular fragments. J. Comput. Chem. 2009, 30, 57–64.

    Article  Google Scholar 

  19. Bera, P. P.; Sattelmeyer, K. W.; Saunders, M.; Schaefer, H. F., III; Schleyer, P. V. R. Mindless chemistry. J. Phys. Chem. A 2006, 110, 4287–4290.

    Article  Google Scholar 

  20. Call, S. T.; Zubarev, D. Y.; Boldyrev, A. I. Global minimum structure searches via particle swarm optimization. J. Comput. Chem. 2007, 28, 1177–1186.

    Article  Google Scholar 

  21. Wang, Y. C.; Lv, J.; Zhu, L.; Ma, Y. M. Calypso: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070.

    Article  Google Scholar 

  22. Shang, C.; Liu, Z.-P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 2013, 9, 1838–1845.

    Article  Google Scholar 

  23. Shang, C.; Zhang, X.-J.; Liu, Z.-P. Stochastic surface walking method for crystal structure and phase transition pathway prediction. Phys. Chem. Chem. Phys. 2014, 16, 17845–17856.

    Article  Google Scholar 

  24. Jiang, D.-E.; Luo, W. D.; Tiago, M. L.; Dai, S. In search of a structural model for a thiolate-protected Au38 cluster. J. Phys. Chem. C. 2008, 112, 13905–13910.

    Article  Google Scholar 

  25. Jiang, D.-E.; Walter, M. Au 40: A large tetrahedral magic cluster. Phys. Rev. B 2011, 84, 193402.

    Article  Google Scholar 

  26. Jiang, M. L.; Zeng, Q.; Zhang, T. T.; Yang, M. L.; Jackson, K. A. Icosahedral to double-icosahedral shape transition of copper clusters. J. Chem. Phys. 2012, 136, 104501.

    Article  Google Scholar 

  27. Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. A concentric planar doubly π-aromatic B19 cluster. Nat. Chem. 2010, 2, 202–206.

    Article  Google Scholar 

  28. Yoo, S.; Zeng, X. C.; Zhu, X. L.; Bai, J. Possible lowest-energy geometry of silicon clusters Si21 and Si25. J. Am. Chem. Soc. 2003, 125, 13318–13319.

    Article  Google Scholar 

  29. Yoo, S.; Zhao, J. J.; Wang, J. L.; Zeng, X. C. Endohedral silicon fullerenes Si n (27 ≤ n ≤ 39). J. Am. Chem. Soc. 2004, 126, 13845–13849.

    Article  Google Scholar 

  30. Bai, J.; Cui, L.-F.; Wang, J. L.; Yoo, S.; Li, X.; Jellinek, J.; Koehler, C.; Frauenheim, T.; Wang, L.-S.; Zeng, X. C. Structural evolution of anionic silicon clusters Sin (20 ≤ n ≤ 45). J. Phys. Chem. A 2006, 110, 908–912.

    Article  Google Scholar 

  31. Bulusu, S.; Zeng, X. C. Structures and relative stability of neutral gold clusters: Aun (n = 15–19). J. Chem. Phys. 2006, 125, 154303.

    Article  Google Scholar 

  32. Choi, T. H.; Liang, R. B.; Maupin, C. M.; Voth, G. A. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. J. Phys. Chem. B 2013, 117, 5165–5179.

    Article  Google Scholar 

  33. Choi, T. H. Simulation of the (H2O)8 cluster with the SCCDFTB electronic structure method. Chem. Phys. Lett. 2012, 543, 45–49.

    Article  Google Scholar 

  34. Zhan, L. X.; Chen, J. Z. Y.; Liu, W.-K.; Lai, S. K. Asynchronous multicanonical basin hopping method and its application to cobalt nanoclusters. J. Chem. Phys. 2005, 122, 244707.

    Article  Google Scholar 

  35. Paz-Borbón, L. O.; Mortimer-Jones, T. V.; Johnston, R. L.; Posada-Amarillas, A.; Barcaro, G.; Fortunelli, A. Structures and energetics of 98 atom Pd-Pt nanoalloys: Potential stability of the leary tetrahedron for bimetallic nanoparticles. Phys. Chem. Chem. Phys. 2007, 9, 5202–5208.

    Article  Google Scholar 

  36. Doye, J. P. K.; Wales, D. J. Thermodynamics of global optimization. Phys. Rev. Lett. 1998, 80, 1357–1360.

    Article  Google Scholar 

  37. Kiran, B.; Bulusu, S.; Zhai, H.-J.; Yoo, S.; Zeng, X. C.; Wang, L.-S. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. USA 2005, 102, 961–964.

    Article  Google Scholar 

  38. Leary, R. H. Global optimization on funneling landscapes. J. Global Optim. 2000, 18, 367–383.

    Article  Google Scholar 

  39. Kim, H. G.; Choi, S. K.; Lee, H. M. New algorithm in the basin hopping Monte Carlo to find the global minimum structure of unary and binary metallic nanoclusters. J. Chem. Phys. 2008, 128, 144702.

    Article  Google Scholar 

  40. Zhan, L. X.; Piwowar, B.; Liu, W.-K.; Hsu, P. J.; Lai, S. K.; Chen, J. Z. Y. Multicanonical basin hopping: A new global optimization method for complex systems. J. Chem. Phys. 2004, 120, 5536–5542.

    Article  Google Scholar 

  41. Iwamatsu, M.; Okabe, Y. Basin hopping with occasional jumping. Chem. Phys. Lett. 2004, 399, 396–400.

    Article  Google Scholar 

  42. Cheng, L. J.; Cai, W. S.; Shao, X. G. A connectivity table for cluster similarity checking in the evolutionary optimization method. Chem. Phys. Lett. 2004, 389, 309–314.

    Article  Google Scholar 

  43. Zhao, Y.-F.; Li, J. The computer software of Tsinghua Global Minima (TGMin) program, version 1.0. Intellectual Property Bureau of China, register no. 2013sr007920, Nov 15, 2012.

  44. Luo, X.-M.; Jian, T.; Cheng, L.-J.; Li, W.-L.; Chen, Q.; Li, R.; Zhai, H.-J.; Li, S.-D.; Boldyrev, A. I.; Li, J. et al. B26–: The smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem. Phys. Lett., in press, DOI: 10.1016/j.cplett.2016.12.051.

  45. Wang, Y.-J.; Zhao, Y.-F.; Li, W.-L.; Jian, T.; Chen, Q.; You, X.-R.; Ou, T.; Zhao, X.-Y.; Zhai, H.-J.; Li, S.-D. et al. Observation and characterization of the smallest borospherene, B28 and B28. J. Chem. Phys. 2016, 144, 064307.

    Article  Google Scholar 

  46. Li, W.-L.; Zhao, Y.-F.; Hu, H.-S.; Li, J.; Wang, L.-S. [B30]: A quasiplanar chiral boron cluster. Angew. Chem., Int. Ed. 2014, 53, 5540–5545.

    Article  Google Scholar 

  47. Li, W.-L.; Chen, Q.; Tian, W.-J.; Bai, H.; Zhao, Y.-F.; Hu, H.-S.; Li, J.; Zhai, H.-J.; Li, S.-D.; Wang, L.-S. The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257–12260.

    Article  Google Scholar 

  48. Piazza, Z. A.; Hu, H.-S.; Li, W.-L.; Zhao, Y.-F.; Li, J.; Wang, L.-S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

    Article  Google Scholar 

  49. Chen, Q.; Li, W.-L.; Zhao, Y.-F.; Zhang, S.-Y.; Hu, H.-S.; Bai, H.; Li, H.-R.; Tian, W.-J.; Lu, H.-G.; Zhai, H.-J. et al. Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 2015, 9, 754–760.

    Article  Google Scholar 

  50. Zhai, H.-J.; Zhao, Y.-F.; Li, W.-L.; Chen, Q.; Bai, H.; Hu, H.-S.; Piazza, Z. A.; Tian, W.-J.; Lu, H.-G.; Wu, Y.-B. et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731.

    Google Scholar 

  51. Jian, T.; Li, W.-L.; Popov, I. A.; Lopez, G. V.; Chen, X.; Boldyrev, A. I.; Li, J.; Wang, L.-S. Manganese-centered tubular boron cluster—MnB16 : A new class of transitionmetal molecules. J. Chem. Phys. 2016, 144, 154310.

    Article  Google Scholar 

  52. Li, W.-L.; Jian, T.; Chen, X.; Chen, T.-T.; Lopez, G. V.; Li, J.; Wang, L.-S. The planar CoB18 cluster as a motif for metallo-borophenes. Angew. Chem., Int. Ed. 2016, 55, 7358–7363.

    Article  Google Scholar 

  53. Jian, T.; Li, W.-L.; Chen, X.; Chen, T.-T.; Lopez, G. V.; Li, J.; Wang, L.-S. Competition between drum and quasi-planar structures in RbB18 : Motifs for metallo-boronanotubes and metallo-borophenes. Chem. Sci. 2016, 7, 7020–7027.

    Article  Google Scholar 

  54. Li, W.-L.; Jian, T.; Chen, X.; Li, H.-R.; Chen, T.-T.; Luo, X.-M.; Li, S.-D.; Li, J.; Wang, L.-S. Observation of a metal-centered B2-Ta@B18 tubular molecular rotor and a perfect Ta@B20 boron drum with the record coordination number of twenty. Chem. Commun. 2017, 53, 1587–1590.

    Google Scholar 

  55. Hu, H.-S.; Zhao, Y.-F.; Hammond, J. R.; Bylaska, E. J.; Aprà, E.; van Dam, H. J. J.; Li, J.; Govind, N.; Kowalski, K. Theoretical studies of the global minima and polarizabilities of small lithium clusters. Chem. Phys. Lett. 2016, 644, 235–242.

    Article  Google Scholar 

  56. Jiang, N.; Schwarz, W. H. E.; Li, J. Theoretical studies on hexanuclear oxometalates [M6L19]q– (M = Cr, Mo, W, Sg, Nd, U). Electronic structures, oxidation states, aromaticity, and stability. Inorg. Chem. 2015, 54, 7171–7180.

    Google Scholar 

  57. Liu, J.-C.; Tang, Y.; Chang, C.-R.; Wang, Y.-G.; Li, J. Mechanistic insights into propene epoxidation with O2-H2O mixture on Au7/α-Al2O3: A hydroproxyl pathway from ab initio molecular dynamics simulations. ACS Catal. 2016, 6, 2525–2535.

    Article  Google Scholar 

  58. Yang, X. F.; Wang, Y. L.; Zhao, Y. F.; Wang, A. Q.; Zhang, T.; Li, J. Adsorption-induced structural changes of gold cations from two- to three-dimensions. Phys. Chem. Chem. Phys. 2010, 12, 3038–3043.

    Article  Google Scholar 

  59. Wang, L.-S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142.

    Article  Google Scholar 

  60. Chen, X.; Zhao, Y.-F.; Wang, L.-S.; Li, J. Recent progresses of global minimum searches of nanoclusters with a constrained basin-hopping algorithm in the TGMin program. Comput. Theor. Chem. 2017, 1107, 57–65.

    Article  Google Scholar 

  61. Bahn, S. R.; Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 2002, 4, 56–66.

    Article  Google Scholar 

  62. Ballester, P. J.; Richards, W. G. Ultrafast shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem. 2007, 28, 1711–1723.

    Article  Google Scholar 

  63. Ballester, P. J.; Richards, W. G. Ultrafast shape recognition for similarity search in molecular databases. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 2007, 463, 1307–1321.

    Article  Google Scholar 

  64. Ballester, P. J.; Finn, P. W.; Richards, W. G. Ultrafast shape recognition: Evaluating a new ligand-based virtual screening technology. J. Mol. Graph. Model. 2009, 27, 836–845.

    Article  Google Scholar 

  65. Takeuchi, H. Clever and efficient method for searching optimal geometries of lennard-jones clusters. J. Chem. Inf. Model. 2006, 46, 2066–2070.

    Article  Google Scholar 

  66. Kim, H. Y.; Kim, H. G.; Kim, D. H.; Lee, H. M. Overstabilization of the metastable structure of isolated Ag-Pd bimetallic clusters. J. Phys. Chem. C 2008, 112, 17138–17142.

    Article  Google Scholar 

  67. Zhao, Y.-F. Theoretical Studies on the Catalytic Mechanisms of Methanol Synthesis. Ph.D. Thesis, Tsinghua University, 2012.

    Google Scholar 

  68. Pyykkö, P.; Riedel, S.; Patzschke, M. Triple-bond covalent radii. Chem.—Eur. J. 2005, 11, 3511–3520.

    Article  Google Scholar 

  69. Pyykkö, P.; Atsumi, M. Molecular double-bond covalent radii for elements Li-E112. Chem.—Eur. J. 2009, 15, 12770–12779.

    Article  Google Scholar 

  70. Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem.—Eur. J. 2009, 15, 186–197.

    Article  Google Scholar 

  71. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  72. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  73. Nguyen, Q. C.; Ong, Y. S.; Soh, H.; Kuo, J.-L. Multiscale approach to explore the potential energy surface of water clusters (H2O)n n ≤ 8. J. Phys. Chem. A 2008, 112, 6257–6261.

    Article  Google Scholar 

  74. Zhai, H. J.; Kiran, B.; Dai, B.; Li, J.; Wang, L. S. Unique CO chemisorption properties of gold hexamer: Au6(CO)n (n = 0–3). J. Am. Chem. Soc 2005, 127, 12098–12106.

    Article  Google Scholar 

  75. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian09, revision A. 1.; Gaussian, Inc.: Wallingford, CT, USA, 2009.

    Google Scholar 

  76. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with adf. J. Comput. Chem. 2001, 22, 931–967.

    Article  Google Scholar 

  77. VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

    Article  Google Scholar 

  78. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L. et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489.

    Article  Google Scholar 

  79. JASMIN; CAEP Software Center for High Performance Numertical Simulation: Beijing, 2010. http://www.caepscns. ac.cn/JASMIN.php (accesssed Feb 20, 2017).

  80. Mo, Z. Y.; Zhang, A. Q.; Cao, X. L.; Liu, Q. K.; Xu, X. W.; An, H. B.; Pei, W. B.; Zhu, S. P. JASMIN: A parallel software infrastructure for scientific computing. Front. Comput. Sci. China 2010, 4, 480–488.

    Article  Google Scholar 

  81. Fang, J.; Gao, X. Y.; Song, H. F.; Wang, H. On the existence of the optimal order for wavefunction extrapolation in Born–Oppenheimer molecular dynamics. J. Chem. Phys. 2016, 144, 244103.

    Article  Google Scholar 

  82. Gao, X. Y.; Mo, Z. Y.; Fang, J.; Song, H. F.; Wang, H. Parallel 3-Dim fast Fourier transforms with load balancing of the plane waves. Comput. Phys. Commun. 2017, 211, 54–60.

    Article  Google Scholar 

  83. Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Au20: A tetrahedral cluster. Science 2003, 299, 864–867.

    Article  Google Scholar 

  84. Bai, H.; Chen, Q.; Zhao, Y.-F.; Wu, Y.-B.; Lu, H.-G.; Li, J.; Li, S.-D. B30H8, B39H9 2–, B42H10, B48H10, and B72H12: Polycyclic aromatic snub hydroboron clusters analogous to polycyclic aromatic hydrocarbons. J. Mol. Model. 2013, 19, 1195–1204.

    Article  Google Scholar 

  85. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  86. Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710.

    Article  Google Scholar 

  87. Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.

    Article  Google Scholar 

  88. Vandevondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.

    Article  Google Scholar 

  89. Pulay, P. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 1980, 73, 393–398.

    Article  Google Scholar 

  90. Xu, C.-Q.; Lee, M.-S.; Wang, Y.-G.; Cantu, D. C.; Li, J.; Glezakou, V. A.; Rousseau, R. Structural rearrangement of Au-Pd nanoparticles under reaction conditions: An ab initio molecular dynamics study. ACS Nano 2017, 11, 1649–1658.

    Article  Google Scholar 

Download references

Acknowledgements

The TGMin program was initially developed at Tsinghua University (China) as a part of the Ph.D. Dissertation (2012) of Y. F. Z. under the supervision of J. L. Y. F. Z. is financially supported by the National Key Research and Development Program of China (No. 2016YFB0201203) and National High-tech R&D Program of China (No. 2015AA01A304). X. C. and J. L. are supported by the National Basic Research Program of China (No. 2013CB834603) and the National Natural Science Foundation of China (Nos. 21433005, 91426302, 21521091, and 21590792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, X. & Li, J. TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm. Nano Res. 10, 3407–3420 (2017). https://doi.org/10.1007/s12274-017-1553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1553-z

Keywords

Navigation