Skip to main content
Log in

Folate targeted coated SPIONs as efficient tool for MRI

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of more sensitive diagnostic tools allowing an early-stage and highly efficient medical imaging of tumors remains a challenge. Magnetic nanoparticles seem to be the contrast agents with the highest potential, if properly constructed. Therefore, in this study, hybrid magnetic nanoarchitectures were developed using a new amphiphilic inulin-based graft copolymer (INU-LAPEG-FA) as coating material for 10-nm spinel iron oxide (magnetite, Fe3O4) superparamagnetic nanoparticles (SPION). Folic acid (FA) covalently linked to the coating copolymer in order to be exposed onto the nanoparticle surface was chosen as the targeting agent because folate receptors are upregulated in many cancer types. Physicochemical characterization and in vitro biocompatibility study was then performed on the prepared magnetic nanoparticles. The improved targeting and imaging properties of the prepared FA-SPIONs were further evaluated in nude mice using 7-Tesla magnetic resonance imaging (MRI). FA-SPIONs exhibited the ability to act as efficient contrast agents in conventional MRI, providing a potential nanoplatform not only for tumor diagnosis but also for cancer treatment, through the delivery of anticancer drug or locoregional magnetic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakhtiary, Z.; Saei, A. A.; Hajipour, M. J.; Raoufi, M.; Vermesh, O.; Mahmoudi, M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine 2016, 12, 287–307.

    Article  Google Scholar 

  2. Liu, X. L.; Ng, C. T.; Chandrasekharan, P.; Yang, H. T.; Zhao, L. Y.; Peng, E.; Lv, Y. B.; Xiao, W.; Fang, J.; Yi, J. B. et al. Synthesis of ferromagnetic Fe0.6Mn0.4O nanoflowers as a new class of magnetic theranostic platform for in vivo T 1T 2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv. Healthc. Mater. 2016, 5, 2092–2104.

    Article  Google Scholar 

  3. Lee, N.; Yoo, D.; Ling, D. S.; Cho, M. H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 2015, 115, 10637–10689.

    Article  Google Scholar 

  4. Sharifi, S.; Seyednejad, H.; Laurent, S.; Atyabi, F.; Saei, A. A.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol. I. 2015, 10, 329–355.

    Article  Google Scholar 

  5. Li, J. C.; He, Y.; Sun, W. J.; Luo, Y.; Cai, H. D.; Pan, Y. Q.; Shen, M. W.; Xia, J. D.; Shi, X. Y. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MRimaging. Biomaterials 2014, 35, 3666–3677.

    Article  Google Scholar 

  6. Zhang, Z. X.; Hu, Y.; Yang, J.; Xu, Y. H.; Zhang, C. Z.; Wang, Z. L.; Shi, X. Y.; Zhang, G. X. Facile synthesis of folic acid-modified iron oxide nanoparticles for targeted MRimaging in pulmonary tumor xenografts. Mol. Imaging Biol. 2016, 18, 569–578.

    Article  Google Scholar 

  7. Scialabba, C.; Licciardi, M.; Mauro, N.; Rocco, F.; Ceruti, M.; Giammona, G. Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. Eur. J. Pharm. Biopharm. 2014, 88, 695–705.

    Article  Google Scholar 

  8. Berry, C. C.; Wells, S.; Charles, S.; Aitchison, G.; Curtis, A. S. G. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 2004, 25, 5405–5413.

    Article  Google Scholar 

  9. Kohler, N.; Sun, C.; Fichtenholtz, A.; Gunn, J.; Fang, C.; Zhang, M. Q. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2006, 2, 785–792.

    Article  Google Scholar 

  10. Licciardi, M.; Li Volsi, A.; Sardo, C.; Mauro, N.; Cavallaro, G.; Giammona, G. Inulin-ethylenediamine coated SPIONs magnetoplexes: A promising tool for improving siRNA delivery. Pharm. Res. 2015, 32, 3674–3687.

    Article  Google Scholar 

  11. Namgung, R.; Singha, K.; Yu, M. K.; Jon, S.; Kim, Y. S.; Ahn, Y.; Park, I. K.; Kim, W. J. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 2010, 31, 4204–4213.

    Article  Google Scholar 

  12. Licciardi, M.; Scialabba, C.; Cavallaro, G.; Sangregorio, C.; Fantechi, E.; Giammona, G. Cell uptake enhancement of folate targeted polymer coated magnetic nanoparticles. J. Biomed. Nanotechnol. 2013, 9, 949–964.

    Article  Google Scholar 

  13. Licciardi, M.; Scialabba, C.; Fiorica, C.; Cavallaro, G.; Cassata, G.; Giammona, G. Polymeric nanocarriers for magnetic targeted drug delivery: Preparation, characterization, and in vitro and in vivo evaluation. Mol. Pharmaceutics 2013, 10, 4397–4407.

    Article  Google Scholar 

  14. Laurent, S.; Saei, A. A.; Behzadi, S.; Panahifar, A.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opin. Drug Deliv. 2014, 11, 1449–1470.

    Article  Google Scholar 

  15. Wang, Y.-X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.

    Google Scholar 

  16. Mauro, N.; Li Volsi, A.; Scialabba, C.; Licciardi, M.; Cavallaro, G.; Giammona, G. Photothermal ablation of cancer cells using folate-coated gold/grapheme oxide composite. Curr. Drug Deliv., in press, DOI: 10.2174/ 1567201813666160520113804.

  17. Licciardi, M.; Li Volsi, A.; Mauro, N.; Scialabba, C.; Cavallaro, G.; Giammona G., Preparation and characterization of inulin coated gold nanoparticles for selective delivery of doxorubicin to breast cancer cells. J. Nanomater. 2016, 2016, 2078315.

    Article  Google Scholar 

  18. Sardo, C.; Craparo, E. F.; Fiorica, C.; Giammona, G.; Cavallaro, G. Inulin derivatives obtained via enhanced microwave synthesis for nucleic acid based drug delivery. Curr. Drug Targets 2015, 16, 1650–1659.

    Article  Google Scholar 

  19. Mauro, N.; Campora, S.; Scialabba, C.; Adamo, G.; Licciardi, M.; Ghersi, G.; Gaetano, G. Self-organized environmentsensitive inulin–doxorubicin conjugate with a selective cytotoxic effect towards cancer cells. RSC Adv. 2015, 5, 32421–32430.

    Article  Google Scholar 

  20. Mandracchia, D.; Tripodo, G.; Trapani, A.; Ruggieri, S.; Annese, T.; Chlapanidas, T.; Trapani, G.; Ribatti, D. Inulin based micelles loaded with curcumin or celecoxib with effective anti-angiogenic activity. Eur. J. Pharm. Sci. 2016, 93, 141–146.

    Article  Google Scholar 

  21. Li, Y. P.; Xiao, K.; Zhu, W.; Deng, W. B.; Lam, K. S. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv. Drug Deliv. Rev. 2014, 66, 58–73.

    Article  Google Scholar 

  22. Wu, L. L.; Zou, Y.; Deng, C.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Intracellular release of doxorubicin from corecrosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials 2013, 34, 5262–5272.

    Article  Google Scholar 

  23. Riemer, J.; Hoepken, H. H.; Czerwinska, H.; Robinson, S. R.; Dringen, R. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal. Biochem. 2004, 331, 370–375.

    Article  Google Scholar 

  24. Asadov, Y. G.; Alyev, Y. I.; Jafarov, K. M. X-ray diffraction study of compounds in the Ag2S-Cu2S system. Inorg. Mater. 2008, 44, 460–466.

    Google Scholar 

  25. Licciardi, M.; Scialabba, C.; Sardo, C.; Cavallaro, G.; Giammona, G. Amphiphilic inulin graft co-polymers as self-assembling micelles for doxorubicin delivery. J. Mater. Chem. B 2014, 2, 4262–4271.

    Article  Google Scholar 

  26. Li Volsi, A.; Jimenez De Aberasturi, D.; Henriksen-Lacey, M.; Giammona, G.; Licciardi, M.; Liz-Marzán, L. M. Inulin coated plasmonic gold nanoparticles as a tumor-selective tool for cancer therapy. J. Mater. Chem. B 2016, 4, 1150–1155.

    Article  Google Scholar 

  27. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    Article  Google Scholar 

  28. Cavallaro, G.; Licciardi, M.; Pitarresi, G.; Giammona, G. Folate-mediated targeting of polymers as components of colloidal drug delivery systems. In Handbook of Drug Targeting and Monitoring; Andreev, B., Ed.; Nova Science Publishers Inc.: NY,2010.

    Google Scholar 

  29. Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012, 3, 18496–18507.

    Article  Google Scholar 

  30. Hilgenbrink, A. R.; Low, P. S. Folate receptor-mediated drug targeting: From therapeutics to diagnostics. J. Pharm. Sci. 2005, 94, 2135–2146.

    Article  Google Scholar 

  31. Lamberti, G.; Cavallaro, G.; Sardo, C.; Scialabba, C.; Licciardi, M.; Giammona, G. Smart inulin-based polycationic nanodevices for siRNA delivery. Curr. Drug Deliv. 2017, 14, 224–230.

    Google Scholar 

  32. Palumbo, F. S.; Fiorica, C.; Di Stefano, M.; Pitarresi, G.; Gulino, A.; Agnello, S.; Gaetano, G. In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration. Carbohydr. Polym. 2015, 122, 408–416.

    Article  Google Scholar 

  33. Mandracchia, D.; Tripodo, G.; Latrofa, A.; Dorati, R. Amphiphilic inulin-D-a-tocopherol succinate (INVITE) bioconjugates for biomedical applications. Carbohydr. Polym. 2014, 103, 46–54.

    Article  Google Scholar 

  34. Mandracchia, D.; Denora, N.; Franco, M.; Pitarresi, G.; Giammona, G.; Trapani, G. New biodegradable hydrogels based on inulin and α,β-polyaspartylhydrazide designed for colonic drug delivery: In vitro release of glutathione and oxytocin. J. Biomater. Sci. Polym. 2011, 22, 313–328.

    Article  Google Scholar 

  35. Yoon, H. Y.; Saravanakumar, G.; Heo, R.; Choi, S. H.; Song, I. C.; Han, M. H.; Kim, K.; Park, J. H.; Choi, K.; Kwon, I. C. et al. Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy. J. Control. Release 2012, 160, 692–698.

    Article  Google Scholar 

  36. Muscas, G.; Concas, G.; Cannas, C.; Musinu, A.; Ardu, A.; Orrù, F.; Fiorani, D.; Laureti, S.; Rinaldi, D.; Piccaluga, G. et al. Magnetic properties of small magnetite nanocrystals. J. Phys. Chem. C 2013, 117, 23378–23384.

    Article  Google Scholar 

  37. Belviso, C.; Agostinelli, E.; Belviso, S.; Cavalcante, F.; Pascucci, S.; Peddis, D.; Varvaro, G.; Fiore, S. Synthesis of magnetic zeolite at low temperature using a waste material mixture: Fly ash and red mud. Microporous Mesoporous Mater. 2015, 202, 208–216.

    Article  Google Scholar 

  38. Peddis, D.; Cannas, C.; Piccaluga, G.; Agostinelli, E.; Fiorani, D. Spin-glass-like freezing and enhanced magnetization in ultra-small CoFe2O4 nanoparticles. Nanotechnology 2010, 21, 125705.

    Article  Google Scholar 

  39. Gittleman, J. I.; Abeles, B.; Bozowski, S. Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films. Phys. Rev. B 1974, 9, 3891–3897.

    Article  Google Scholar 

  40. Peddis, D.; Cannas, C.; Musinu, A.; Ardu, A.; Orrù, F.; Fiorani, D.; Laureti, S.; Rinaldi, D.; Muscas, G.; Concas, G. et al. Beyond the effect of particle size: Influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem. Mater. 2013, 25, 2005–2013.

    Article  Google Scholar 

  41. Peddis, D.; Rinaldi, D.; Ennas, G.; Scano, A.; Agostinelli, E.; Fiorani, D. Superparamagnetic blocking and superspin-glass freezing in ultra small δ-(Fe0.67Mn0.33)OOH particles. Phys. Chem. Chem. Phys. 2012, 14, 3162–3169

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy for the use of MRI scanner. The authors also thank the MIUR and the University of Palermo for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Licciardi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scialabba, C., Puleio, R., Peddis, D. et al. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res. 10, 3212–3227 (2017). https://doi.org/10.1007/s12274-017-1540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1540-4

Keywords

Navigation