Skip to main content

Advertisement

Log in

Stearic Acid-Grafted Chitooligosaccharide Nanomicelle System with Biocleavable Gadolinium Chelates as a Multifunctional Agent for Tumor Imaging and Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Theranostic nanoplatforms are promising approaches for diagnosis and treatment. Here, we report a drug-loaded nanomicelle system with biocleavable gadolinium (Gd) chelates as a multifunctional biodegradable agent for simultaneous magnetic resonance imaging (MRI) and drug delivery.

Methods

Self-assembled nanomicelles based on stearic acid-grafted chitooligosaccharide were utilized as vehicles. Gd chelates, DTPA-Gds, were linked to the nanomicelles via redox-responsive disulfide bonds, and hydrophobic drugs were encapsulated in the micelle cores. MRI and cargo delivery were investigated in orthotopic pancreatic tumor-bearing mice.

Results

In vivo MRI demonstrated that the biodegradable agent was cleaved by endogenous thiols after intravenous injection, and the released DTPA-Gds were eliminated rapidly. At the same time, the agent resulted in a greater contrast enhancement of T1-weighted MR signal intensity at the tumor region than Magnevist®, and the tumor boundaries were clearly defined for at least 2 h. In addition, the agent possessed high drug-loading and tumor-targeting capacities. Loading content and encapsulation efficiency of docetaxel were 3.2% and 99.4%, respectively. Compared with Taxotere®, the commercially available docetaxel injection, the docetaxel-loaded agent significantly increased the drug concentration in tumor tissue in vivo.

Conclusion

The fabricated multifunctional agent may serve as a biodegradable nanoscale MRI contrast agent and as a drug delivery system for tumor diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BisPDSEA-DTPA-Gd:

Bis(2-pyridin-2-yldisulfanyl ethylamido)diethylenetriaminepentaacetic acid gadolinium complex

CAs:

Contrast agents

COS:

Chitooligosaccharide

COSSA:

Stearic acid-grafted chitooligosaccharide

COS-NAC:

N-acetylcysteine-grafted COS

DTX:

Docetaxel

MBA:

Multifunctional biodegradable agent

MNGCs:

Macromolecular and nanoscale Gd complexes

NAC:

N-acetylcysteine

PDSEA•HCl:

2-(pyridin-2-yldisulfanyl)ethanamine hydrochloride

SA:

Stearic acid

-ss- :

Disulfide bonds

References

  1. Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol I. 2009;4(1):1–23.

    Article  CAS  Google Scholar 

  2. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–352.

    Article  CAS  Google Scholar 

  3. U.S. Food and Drug Administration. Information on gadolinium-based contrast agents; 2017 January 19th. Available from https://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm142882.htm.

  4. Huang CH, Tsourkas A. Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging. Curr Top Med Chem. 2013;13(4):411–21.

    Article  CAS  Google Scholar 

  5. Bumb A, Brechbiel MW, Choyke P. Macromolecular and dendrimer-based magnetic resonance contrast agents. Acta Radiol. 2010;51(7):751–67.

    Article  Google Scholar 

  6. Mohs AM, Lu ZR. Gadolinium(III)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential. Expert Opin Drug Deliv. 2007;4(2):149–64.

    Article  CAS  Google Scholar 

  7. Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol. 1984;142(3):619–24.

    Article  CAS  Google Scholar 

  8. Li X, Sun L, Wei X, Luo Q, Cai H, Xiao X, et al. Stimuli-responsive biodegradable and gadolinium-based poly[N-(2-hydroxypropyl) methacrylamide] copolymers: their potential as targeting and safe magnetic resonance imaging probes. J Mater Chem B. 2017;5(15):52763–74.

    Google Scholar 

  9. Guo C, Sun L, Cai H, Duan Z, Zhang S, Gong Q, et al. Gadolinium-labeled biodegradable dendron-hyaluronic acid hybrid and its subsequent application as a safe and efficient magnetic resonance imaging contrast agent. ACS Appl Mater Inter. 2017;9(28):23508–19.

    Article  CAS  Google Scholar 

  10. Dong J, Liu M, Zhang K, Cao Y, Jiang B, Zu G, et al. Biocleavable oligolysine-grafted poly(disulfide amine)s as magnetic resonance imaging probes. Bioconjug Chem. 2016;27(1):151–8.

    Article  CAS  Google Scholar 

  11. Gao X, Wang G, Shi T, Shao Z, Zhao P, Shi D, et al. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging. Mater Sci Eng C Mater Biol Appl. 2016;65:181–7.

    Article  CAS  Google Scholar 

  12. Malamas AS, Jin E, Zhang Q, Haaga J, Lu ZR. Anti-angiogenic effects of bumetanide revealed by DCE-MRI with a biodegradable macromolecular contrast agent in a colon cancer model. Pharm Res. 2015;32(9):3029–43.

    Article  CAS  Google Scholar 

  13. Xu R, Wang Y, Wang X, Jeong EK, Parker DL, Lu ZR. In Vivo evaluation of a PAMAM-cystamine-(Gd-DO3A) conjugate as a biodegradable macromolecular MRI contrast agent. Exp Biol Med. 2007;232(8):1081–9.

    Article  CAS  Google Scholar 

  14. Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, Rocca JD, Okoruwa C, An H, et al. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small. 2011;7(24):3519–28.

    Article  CAS  Google Scholar 

  15. Xu R, Kaneshiro TL, Jeong EK, Parker DL, Lu ZR. Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography. Int J Nanomedicine. 2010;5:707–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24(6):1159–66.

    Article  CAS  Google Scholar 

  17. Pitchaimani A, Tuyen DTN, Wang H, Bossmann SH, Aryal S. Design and characterization of gadolinium infused theranostic liposomes. RSC Adv. 2016;6(43):36898–905.

    Article  CAS  Google Scholar 

  18. Li L, Tong R, Li M, Kohane DS. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomater. 2016;33:34–9.

    Article  Google Scholar 

  19. Li Y, Duong HTT, Laurent S, MacMillan A, Whan RM, Elst LV, et al. Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity. Adv Healthc Mater. 2015;4(1):148–56.

    Article  CAS  Google Scholar 

  20. Zhu J, Xiong Z, Shen M, Shi X. Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells. RSC Adv. 2015;5(38):30286–96.

    Article  Google Scholar 

  21. Cao M, Wang P, Kou Y, Wang J, Liu J, Li Y, et al. Gadolinium(III)-chelated silica nanospheres integrating chemotherapy and photothermal therapy for cancer treatment and magnetic resonance imaging. ACS Appl Mater Inter. 2015;7(45):25014–23.

    Article  CAS  Google Scholar 

  22. Shalviri A, Foltz WD, Cai P, Rauth AM, Wu XY. Multifunctional terpolymeric MRI contrast agent with superior signal enhancement in blood and tumor. J Control Release. 2013;167(1):11–20.

    Article  CAS  Google Scholar 

  23. Hu FQ, Ren GF, Yuan H, Du YZ, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B Biointerfaces. 2006;50(2):97–103.

    Article  CAS  Google Scholar 

  24. Du YZ, Lu P, Zhou JP, Yuan H, Hu FQ. Stearic acid grafted chitosan oligosaccharide micelle as a promising vector for gene delivery system: factors affecting the complexation. Int J Pharm. 2010;391(1–2):260–6.

    Article  CAS  Google Scholar 

  25. Schmitz T, Grabovac V, Palmberger TF, Hoffer MH, Bernkop-Schnürch A. Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate. Int J Pharm. 2008;347(1–2):79–85.

    Article  CAS  Google Scholar 

  26. Vivero-Escoto JL, Rieter WJ, Lau H, Huxford-Phillips RC, Lin W. Biodegradable polysilsesquioxane nanoparticles as efficient contrast agents for magnetic resonance imaging. Small. 2013;9(20):3523–31.

    Article  CAS  Google Scholar 

  27. Lapidot Y, Rappoport S, Wolman Y. Use of esters of N-hydroxysuccinimide in the synthesis of N-acylamino acids. J Lipid Res. 1967;8(2):142–5.

    CAS  PubMed  Google Scholar 

  28. Molina-Bolívar JA, Hierrezuelo JM, Carnero RC. Self-assembly, hydration, and structures in N-decanoyl-N-methylglucamide aqueous solutions: effect of salt addition and temperature. J Colloid Interface Sci. 2007;313(2):656–64.

    Article  Google Scholar 

  29. Zhang W, Zheng S, Yao X, Du B, Weng W. Preparation of gadolinium-loaded stearic acid grafted chitooligosaccharide and application in pancreatic tumor imaging. Chin J Med Imag Technol. 2017;33:499–503.

    Google Scholar 

  30. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30(2):226–32.

    Article  Google Scholar 

  31. Lodhi G, Kim Y, Hwang J, Kim S, Jeon Y, Je J, et al. Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Res Int. 2014;2014:654913.

    PubMed  PubMed Central  Google Scholar 

  32. U.S. Food and Drug Administration. Magnevist injection label; 2012 March 19th. Available from https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/019596s051lbl.pdf.

  33. Lau SC, Cheung WY. Evolving treatment landscape for early and advanced pancreatic cancer. World J Gastrointest Oncol. 2017;9(7):281–92.

    Article  Google Scholar 

  34. Padera TP, Stoll BR, Tooredman JB, Capen D, Di TE, Pathology JRK. cancer cells compress intratumour vessels. Nature. 2004;427(6976):695.

    Article  CAS  Google Scholar 

  35. He B, Hu HY, Tan T, Wang H, Sun KX, Li YP, et al. IR-780-loaded polymeric micelles enhance the efficacy of photothermal therapy in treating breast cancer lymphatic metastasis in mice. Acta Pharmacol Sin. 2017;39:132–9.

    Article  Google Scholar 

  36. Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, et al. HydrophobicIR-780 dye encapsulated in cRGD-conjugated solid lipid nanoparticles for NIR imaging-guided photothermal therapy. ACS Appl Mater Inter. 2017;9(14):12217–26.

    Article  CAS  Google Scholar 

  37. Meng F, Wang J, Ping Q, Yeo Y. Quantitative assessment of nanoparticle biodistribution by fluorescence imaging, revisited. ACS Nano. 2018;12(7):6458–68.

    Article  CAS  Google Scholar 

  38. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

TThis work was supported by the Shanghai Natural Science Foundation (16ZR1405900). The authors thank the staff of the Center of Analysis & Test at East China University of Science and Technology for helping with the ICP-OES measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyu Weng.

Additional information

Chuhua Xin and Xiuzhong Yao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, C., Yao, X., Du, B. et al. Stearic Acid-Grafted Chitooligosaccharide Nanomicelle System with Biocleavable Gadolinium Chelates as a Multifunctional Agent for Tumor Imaging and Drug Delivery. Pharm Res 36, 10 (2019). https://doi.org/10.1007/s11095-018-2530-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2530-2

Keywords

Navigation