Skip to main content
Log in

Surface modification of nanozymes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles and proteins are similar in a number of aspects, and using nanoparticles to mimic the catalytic function of enzymes is an interesting yet challenging task. Impressive developments have been made over the past two decades on this front. The term nanozyme was coined to refer to nanoparticlebased enzyme mimics. To date, many different types of nanozymes have been reported to catalyze a broad range of reactions for chemical, analytical, and biomedical applications. Since chemical reactions happen mainly on the surface of nanozymes, an interesting aspect for investigation is surface modification. In this review, we summarize three types of nanozyme materials catalyzing various reactions with a focus on their surface chemistry. For metal oxides, cerium oxide and iron oxide are discussed as they are the most extensively studied. Then, gold nanoparticles and graphene oxide are reviewed to represent metallic and carbon nanomaterials, respectively. Types of modifications include ions, small molecules, and polymers mainly by physisorption, while in a few cases, covalent modifications were also employed. The functional aspect of such modification is to improve catalytic activity, substrate specificity, and stability. Future perspectives of this field are speculated at the end of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

    Article  Google Scholar 

  2. Xu, C.; Qu, X. G. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90.

    Article  Google Scholar 

  3. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  Google Scholar 

  4. Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420.

    Article  Google Scholar 

  5. Lin, Y. H.; Ren, J. S.; Qu, X. G. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014, 26, 4200–4217.

    Article  Google Scholar 

  6. Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

    Article  Google Scholar 

  7. Manea, F.; Houillon, F. B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004, 43, 6165–6169.

    Article  Google Scholar 

  8. Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of “naked” gold particles. Angew. Chem., Int. Ed. 2004, 43, 5812–5815.

    Article  Google Scholar 

  9. Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraki, T.; Sugiura, Y. Photoinduced biochemical activity of fullerene carboxylic acid. J. Am. Chem. Soc. 1993, 115, 7918–7919.

    Article  Google Scholar 

  10. Dugan, L. L.; Turetsky, D. M.; Du, C.; Lobner, D.; Wheeler, M.; Almli, C. R.; Shen, C. K.-F.; Luh, T.-Y.; Choi, D. W.; Lin, T.-S. Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. USA 1997, 94, 9434–9439.

    Article  Google Scholar 

  11. Cheng, H. J.; Zhang, L.; He, J.; Guo, W. J.; Zhou, Z. Y.; Zhang, X. J.; Nie, S. M.; Wei, H. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal. Chem. 2016, 88, 5489–5497.

    Article  Google Scholar 

  12. Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254.

    Article  Google Scholar 

  13. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  Google Scholar 

  14. Yu, F. Q.; Huang, Y. Z.; Cole, A. J.; Yang, V. C. The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 2009, 30, 4716–4722.

    Article  Google Scholar 

  15. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

    Article  Google Scholar 

  16. Dong, Y.-L.; Zhang, H.-G.; Rahman, Z. U.; Su, L.; Chen, X.-J.; Hu, J.; Chen, X.-G. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 2012, 4, 3969–3976.

    Article  Google Scholar 

  17. Liu, B. W.; Sun, Z. Y.; Huang, P.-J. J.; Liu, J. W. Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015, 137, 1290–1295.

    Article  Google Scholar 

  18. Tarnuzzer, R. W.; Colon, J.; Patil, S.; Seal, S. Vacancy engineered ceria nanostructures for protection from radiationinduced cellular damage. Nano Lett. 2005, 5, 2573–2577.

    Article  Google Scholar 

  19. Kuah, E.; Toh, S.; Yee, J.; Ma, Q.; Gao, Z. Q. Enzyme mimics: Advances and applications. Chem.—Eur. J. 2016, 22, 8404–8430.

    Article  Google Scholar 

  20. Gao, L. Z.; Yan, X. Y. Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China: Life Sci. 2016, 59, 400–402.

    Article  Google Scholar 

  21. Ragg, R.; Tahir, M. N.; Tremel, W. Solids go bio: Inorganic nanoparticles as enzyme mimics. Eur. J. Inorg. Chem. 2016, 2016, 1906–1915.

    Article  Google Scholar 

  22. Mancin, F.; Prins, L. J.; Pengo, P.; Pasquato, L.; Tecilla, P.; Scrimin, P. Hydrolytic metallo-nanozymes: From micelles and vesicles to gold nanoparticles. Molecules 2016, 21, 1014.

    Article  Google Scholar 

  23. Wang, X.; Guo, W.; Hu, Y.; Wu, J.; Wei, H. Nanozymes: Next Wave of Artificial Enzymes; Springer: Berlin Heidelberg, 2016.

  24. Liu, B. W.; Huang, Z. C.; Liu, J. W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: Rivaling protein enzymes and ultrasensitive F–detection. Nanoscale 2016, 8, 13562–13567.

    Article  Google Scholar 

  25. Xu, C.; Liu, Z.; Wu, L.; Ren, J. S.; Qu, X. G. Nucleoside triphosphates as promoters to enhance nanoceria enzyme-like activity and for single-nucleotide polymorphism typing. Adv. Funct. Mater. 2014, 24, 1624–1630.

    Article  Google Scholar 

  26. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 2009, 121, 2344–2348.

    Article  Google Scholar 

  27. Pautler, R.; Kelly, E. Y.; Huang, P.-J. J.; Cao, J.; Liu, B. W.; Liu, J. W. Attaching DNA to nanoceria: Regulating oxidase activity and fluorescence quenching. ACS Appl. Mater. Interfaces 2013, 5, 6820–6825.

    Article  Google Scholar 

  28. Bülbül, G.; Hayat, A.; Andreescu, S. ssDNA-functionalized nanoceria: A redox-active aptaswitch for biomolecular recognition. Adv. Healthc. Mater. 2016, 5, 822–828.

    Article  Google Scholar 

  29. Singh, S.; Dosani, T.; Karakoti, A. S.; Kumar, A.; Seal, S.; Self, W. T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 2011, 32, 6745–6753.

    Article  Google Scholar 

  30. Perez, J. M.; Asati, A.; Nath, S.; Kaittanis, C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 2008, 4, 552–556.

    Article  Google Scholar 

  31. Liu, X. Y.; Wei, W.; Yuan, Q.; Zhang, X.; Li, N.; Du, Y. G.; Ma, G. H.; Yan, C. H.; Ma, D. Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 2012, 48, 3155–3157.

    Article  Google Scholar 

  32. Karakoti, A. S.; Singh, S.; Kumar, A.; Malinska, M.; Kuchibhatla, S. V. N. T.; Wozniak, K.; Self, W. T.; Seal, S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 2009, 131, 14144–14145.

    Google Scholar 

  33. Li, Y. Y.; He, X.; Yin, J.-J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1832–1835.

    Article  Google Scholar 

  34. Xue, Y.; Zhai, Y. W.; Zhou, K. B.; Wang, L.; Tan, H. N.; Luan, Q. F.; Yao, X. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chem.—Eur. J. 2012, 18, 11115–11122.

    Article  Google Scholar 

  35. Zhai, Y. W.; Zhang, Y.; Qin, F.; Yao, X. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens. Bioelectron. 2015, 70, 130–136.

    Article  Google Scholar 

  36. Chen, C. X.; Lu, L. X.; Zheng, Y.; Zhao, D.; Yang, F.; Yang, X. R. A new colorimetric protocol for selective detection of phosphate based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal. Methods 2015, 7, 161–167.

    Article  Google Scholar 

  37. Liu, C.-H.; Yu, C.-J.; Tseng, W.-L. Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal. Chim. Acta 2012, 745, 143–148.

    Article  Google Scholar 

  38. Liu, Y.; Purich, D. L.; Wu, C. C.; Wu, Y.; Chen, T.; Cui, C.; Zhang, L. Q.; Cansiz, S.; Hou, W. J.; Wang, Y. Y. et al. Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzymelike properties. J. Am. Chem. Soc. 2015, 137, 14952–14958.

    Article  Google Scholar 

  39. Fan, K. L.; Wang, H.; Xi, J. Q.; Liu, Q.; Meng, X. Q.; Duan, D. M.; Gao, L. Z.; Yan, X. Y. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 2017, 53, 424–427.

    Article  Google Scholar 

  40. Park, K. S.; Kim, M. I.; Cho, D.-Y.; Park, H. G. Label-free colorimetric detection of nucleic acids based on targetinduced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 2011, 7, 1521–1525.

    Article  Google Scholar 

  41. Liu, B. W.; Liu, J. W. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 2015, 7, 13831–13835.

    Article  Google Scholar 

  42. Li, X. N.; Wen, F.; Creran, B.; Jeong, Y.; Zhang, X. R.; Rotello, V. M. Colorimetric protein sensing using catalytically amplified sensor arrays. Small 2012, 8, 3589–3592.

    Article  Google Scholar 

  43. Zhang, X.-Q.; Gong, S.-W.; Zhang, Y.; Yang, T.; Wang, C.-Y.; Gu, N. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J. Mater. Chem. 2010, 20, 5110–5116.

    Article  Google Scholar 

  44. Zhu, R.; Zhou, Y.; Wang, X.-L.; Liang, L.-P.; Long, Y.-J.; Wang, Q.-L.; Zhang, H.-J.; Huang, X.-X.; Zheng, H.-Z. Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta 2013, 117, 127–132.

    Article  Google Scholar 

  45. Zhang, D. Y.; Chen, Z.; Omar, H.; Deng, L.; Khashab, N. M. Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl. Mater. Interfaces 2015, 7, 4589–4594.

    Article  Google Scholar 

  46. Long, Y. J.; Li, Y. F.; Liu, Y.; Zheng, J. J.; Tang, J.; Huang, C. Z. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 2011, 47, 11939–11941.

    Article  Google Scholar 

  47. Wang, C.-I.; Huang, C.-C.; Lin, Y.-W.; Chen, W.-T.; Chang, H.-T. Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions. Anal. Chim. Acta 2012, 745, 124–130.

    Article  Google Scholar 

  48. Deng, H.-H.; Weng, S.-H.; Huang, S.-L.; Zhang, L.-N.; Liu, A.-L.; Lin, X.-H.; Chen, W. Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2014, 852, 218–222.

    Article  Google Scholar 

  49. Jv, Y.; Li, B. X.; Cao, R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017–8019.

    Article  Google Scholar 

  50. Wang, S.; Chen, W.; Liu, A.-L.; Hong, L.; Deng, H.-H.; Lin, X.-H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 2012, 13, 1199–1204.

    Article  Google Scholar 

  51. Ni, P. J.; Dai, H. C.; Wang, Y. L.; Sun, Y. J.; Shi, Y.; Hu, J. T.; Li, Z. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens. Bioelectron. 2014, 60, 286–291.

    Article  Google Scholar 

  52. Lin, Y. H.; Huang, Y. Y.; Ren, J. S.; Qu, X. G. Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Mater. 2014, 6, e114.

    Article  Google Scholar 

  53. Shah, J.; Purohit, R.; Singh, R.; Karakoti, A. S.; Singh, S. ATP-enhanced peroxidase-like activity of gold nanoparticles. J. Colloid Interface Sci. 2015, 456, 100–107.

  54. Sharma, T. K.; Ramanathan, R.; Weerathunge, P.; Mohammadtaheri, M.; Daima, H. K.; Shukla, R.; Bansal, V. Aptamer-mediated “turn-off/turn-on” nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. 2014, 50, 15856–15859.

    Article  Google Scholar 

  55. Hizir, M. S.; Top, M.; Balcioglu, M.; Rana, M.; Robertson, N. M.; Shen, F. S.; Sheng, J.; Yigit, M. V. Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 2016, 88, 600–605.

    Article  Google Scholar 

  56. Lien, C.-W.; Chen, Y.-C.; Chang, H.-T.; Huang, C.-C. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale 2013, 5, 8227–8234.

    Article  Google Scholar 

  57. Zheng, X. X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W. J.; Wen, Y. Q.; He, Y.; Huang, Q.; Long, Y.-T. et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem., Int. Ed. 2011, 50, 11994–11998.

    Article  Google Scholar 

  58. Zhan, P. F.; Wang, Z.-G.; Li, N.; Ding, B. Q. Engineering gold nanoparticles with DNA ligands for selective catalytic oxidation of chiral substrates. ACS Catal. 2015, 5, 1489–1498.

    Article  Google Scholar 

  59. Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed. 2015, 54, 7176–7180.

    Article  Google Scholar 

  60. Xu, C.; Zhao, C. Q.; Li, M.; Wu, L.; Ren, J. S.; Qu, X. G. Artificial evolution of graphene oxide chemzyme with enantioselectivity and near-infrared photothermal effect for cascade biocatalysis reactions. Small 2014, 10, 1841–1847.

    Article  Google Scholar 

  61. Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282–1290.

    Article  Google Scholar 

  62. Solanki, P. R.; Kaushik, A.; Agrawal, V. V.; Malhotra, B. D. Nanostructured metal oxide-based biosensors. NPG Asia Mater. 2011, 3, 17–24.

    Article  Google Scholar 

  63. Koziej, D.; Lauria, A.; Niederberger, M. 25th anniversary article: Metal oxide particles in materials science: Addressing all length scales. Adv. Mater. 2014, 26, 235–257.

    Google Scholar 

  64. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.

    Article  Google Scholar 

  65. Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549.

    Article  Google Scholar 

  66. Zhang, Y.; Wang, Z. Y.; Li, X. J.; Wang, L.; Yin, M.; Wang, L. H.; Chen, N.; Fan, C. H.; Song, H. Y. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila. Adv. Mater. 2016, 28, 1387–1393.

    Article  Google Scholar 

  67. Dong, J. L.; Song, L.; Yin, J.-J.; He, W. W.; Wu, Y. H.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 2014, 6, 1959–1970.

    Article  Google Scholar 

  68. Chen, W.; Chen, J.; Feng, Y.-B.; Hong, L.; Chen, Q.-Y.; Wu, L.-F.; Lin, X.-H.; Xia, X.-H. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 2012, 137, 1706–1712.

    Article  Google Scholar 

  69. Das, M.; Patil, S.; Bhargava, N.; Kang, J.-F.; Riedel, L. M.; Seal, S.; Hickman, J. J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007, 28, 1918–1925.

    Article  Google Scholar 

  70. Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

  71. Kuchma, M. H.; Komanski, C. B.; Colon, J.; Teblum, A.; Masunov, A. E.; Alvarado, B.; Babu, S.; Seal, S.; Summy, J.; Baker, C. H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine 2010, 6, 738–744.

    Article  Google Scholar 

  72. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041.

    Article  Google Scholar 

  73. Jiao, X.; Song, H. J.; Zhao, H. H.; Bai, W.; Zhang, L. C.; Lv, Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 2012, 4, 3261–3267.

    Article  Google Scholar 

  74. Tian, Z. M.; Li, J.; Zhang, Z. Y.; Gao, W.; Zhou, X. M.; Qu, Y. Q. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 2015, 59, 116–124.

    Article  Google Scholar 

  75. Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

    Article  Google Scholar 

  76. Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

    Article  Google Scholar 

  77. Hayat, A.; Bulbul, G.; Andreescu, S. Probing phosphatase activity using redox active nanoparticles: A novel colorimetric approach for the detection of enzyme activity. Biosens. Bioelectron. 2014, 56, 334–339.

    Article  Google Scholar 

  78. Deshpande, S.; Patil, S.; Kuchibhatla, S. V.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113.

    Article  Google Scholar 

  79. Cafun, J.-D.; Kvashnina, K. O.; Casals, E.; Puntes, V. F.; Glatzel, P. Absence of Ce3+ sites in chemically active colloidal ceria nanoparticles. ACS Nano 2013, 7, 10726–10732.

    Article  Google Scholar 

  80. Singh, R.; Singh, S. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids Surf. B 2015, 132, 78–84.

    Article  Google Scholar 

  81. Xue, Y.; Luan, Q. F.; Yang, D.; Yao, X.; Zhou, K. B. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C 2011, 115, 4433–4438.

    Article  Google Scholar 

  82. Silva, G. A. Nanomedicine: Seeing the benefits of ceria. Nat. Nanotechnol. 2006, 1, 92–94.

    Article  Google Scholar 

  83. Hirst, S. M.; Karakoti, A. S.; Tyler, R. D.; Sriranganathan, N.; Seal, S.; Reilly, C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856.

    Article  Google Scholar 

  84. Cheng, H. J.; Lin, S. C.; Muhammad, F.; Lin, Y.-W.; Wei, H. Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens. 2016, 1, 1336–1343.

    Article  Google Scholar 

  85. Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharidedecorated nanoparticles. Eur. J. Pharm. Biopharm. 2004, 58, 327–341.

    Article  Google Scholar 

  86. Sardesai, N. P.; Andreescu, D.; Andreescu, S. Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes. J. Am. Chem. Soc. 2013, 135, 16770–16773.

    Article  Google Scholar 

  87. McCormack, R. N.; Mendez, P.; Barkam, S.; Neal, C. J.; Das, S.; Seal, S. Inhibition of nanoceria’s catalytic activity due to Ce3+ site-specific interaction with phosphate ions. J. Phys. Chem. C 2014, 118, 18992–19006.

    Article  Google Scholar 

  88. Gao, W.; Wei, X. P.; Wang, X. J.; Cui, G. W.; Liu, Z. H.; Tang, B. A competitive coordination-based CeO2 nanowire- DNA nanosensor: Fast and selective detection of hydrogen peroxide in living cells and in vivo. Chem. Commun. 2016, 52, 3643–3646.

    Article  Google Scholar 

  89. Bhushan, B.; Gopinath, P. Antioxidant nanozyme: A facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J. Mater. Chem. B 2015, 3, 4843–4852.

    Article  Google Scholar 

  90. Chen, Z. W.; Yin, J.-J.; Zhou, Y.-T.; Zhang, Y.; Song, L.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

    Article  Google Scholar 

  91. Liu, B. W.; Han, X.; Liu, J. W. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale 2016, 8, 13620–13626.

    Article  Google Scholar 

  92. Wang, L. J.; Min, Y.; Xu, D. D.; Yu, F. J.; Zhou, W. Z.; Cuschieri, A. Membrane lipid peroxidation by the peroxidaselike activity of magnetite nanoparticles. Chem. Commun. 2014, 50, 11147–11150.

    Article  Google Scholar 

  93. Zhang, Z. X.; Wang, Z. J.; Wang, X. L.; Yang, X. R. Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sens. Actuators B 2010, 147, 428–433.

    Article  Google Scholar 

  94. Liu, S. H.; Lu, F.; Xing, R. M.; Zhu, J.-J. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem.—Eur. J. 2011, 17, 620–625.

    Article  Google Scholar 

  95. Fan, K. L.; Cao, C. Q.; Pan, Y. X.; Lu, D.; Yang, D. L.; Feng, J.; Song, L.; Liang, M. M.; Yan, X. Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 459–464.

    Article  Google Scholar 

  96. Mohan, D.; Pittman, C. U., Jr. Arsenic removal from water/ wastewater using adsorbents: A critical review. J. Hazard. Mater. 2007, 142, 1–53.

    Article  Google Scholar 

  97. Hua, M.; Zhang, S. J.; Pan, B. C.; Zhang, W. M.; Lv, L.; Zhang, Q. X. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331.

    Article  Google Scholar 

  98. Turcheniuk, K.; Tarasevych, A. V.; Kukhar, V. P.; Boukherroub, R.; Szunerits, S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 2013, 5, 10729–10752.

    Article  Google Scholar 

  99. Shultz, M. D.; Reveles, J. U.; Khanna, S. N.; Carpenter, E. E. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. J. Am. Chem. Soc. 2007, 129, 2482–2487.

    Article  Google Scholar 

  100. Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.

    Article  Google Scholar 

  101. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  Google Scholar 

  102. Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    Article  Google Scholar 

  103. Zheng, W. C.; Fan, H. L.; Wang, L.; Jin, Z. X. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir 2015, 31, 11671–11677.

    Article  Google Scholar 

  104. Hayat, A.; Andreescu, D.; Bulbul, G.; Andreescu, S. Redox reactivity of cerium oxide nanoparticles against dopamine. J. Colloid Interface Sci. 2014, 418, 240–245.

    Article  Google Scholar 

  105. Golub, E.; Albada, H. B.; Liao, W.-C.; Biniuri, Y.; Willner, I. Nucleoapzymes: Hemin/G-quadruplex DNAzyme–aptamer binding site conjugates with superior enzyme-like catalytic functions. J. Am. Chem. Soc. 2016, 138, 164–172.

    Article  Google Scholar 

  106. Albada, H. B.; de Vries, J. W.; Liu, Q.; Golub, E.; Klement, N.; Herrmann, A.; Willner, I. Supramolecular micelle-based nucleoapzymes for the catalytic oxidation of dopamine to aminochrome. Chem. Commun. 2016, 52, 5561–5564.

    Article  Google Scholar 

  107. Zhang, X. Y.; Wang, S. Q.; Xu, L. X.; Feng, L.; Ji, Y.; Tao, L.; Li, S. X.; Wei, Y. Biocompatible polydopamine fluorescent organic nanoparticles: Facile preparation and cell imaging. Nanoscale 2012, 4, 5581–5584.

    Article  Google Scholar 

  108. Yildirim, A.; Bayindir, M. Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Anal. Chem. 2014, 86, 5508–5512.

    Article  Google Scholar 

  109. Lin, J.-H.; Yu, C.-J.; Yang, Y.-C.; Tseng, W.-L. Formation of fluorescent polydopamine dots from hydroxyl radicalinduced degradation of polydopamine nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 15124–15130.

    Article  Google Scholar 

  110. Zhang, W.; Hu, S. L.; Yin, J.-J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

    Article  Google Scholar 

  111. Sang, J. L.; Wu, R. L.; Guo, P. P.; Du, J.; Xu, S. M.; Wang, J. D. Affinity-tuned peroxidase-like activity of hydrogel-supported Fe3O4 nanozyme through alteration of crosslinking concentration. J. Appl. Polym. Sci. 2016, 133, 43065.

    Article  Google Scholar 

  112. Gao, Y.; Wei, Z.; Li, F.; Yang, Z. M.; Chen, Y. M.; Zrinyi, M.; Osada, Y. Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem. 2014, 16, 1255–1261.

    Article  Google Scholar 

  113. Mu, J. S.; Zhang, L.; Zhao, M.; Wang, Y. Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl. Mater. Interfaces 2014, 6, 7090–7098.

    Article  Google Scholar 

  114. Mu, J. S.; Zhang, L.; Zhao, M.; Wang, Y. Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A: Chem. 2013, 378, 30–37.

    Article  Google Scholar 

  115. Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.

    Article  Google Scholar 

  116. Liu, Q. Y.; Yang, Y. T.; Li, H.; Zhu, R. R.; Shao, Q.; Yang, S. G.; Xu, J. J. Nio nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 2015, 64, 147–153.

    Article  Google Scholar 

  117. Yuan, J.; Cen, Y.; Kong, X.-J.; Wu, S.; Liu, C.-L.; Yu, R.-Q.; Chu, X. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl. Mater. Interfaces 2015, 7, 10548–10555.

    Article  Google Scholar 

  118. Lu, Y. Z.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594–3623.

    Article  Google Scholar 

  119. Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

    Article  Google Scholar 

  120. Lin, Y. H.; Zhao, A. D.; Tao, Y.; Ren, J. S.; Qu, X. G. Ionic liquid as an efficient modulator on artificial enzyme system: Toward the realization of high-temperature catalytic reactions. J. Am. Chem. Soc. 2013, 135, 4207–4210.

    Article  Google Scholar 

  121. Comotti, M.; Della Pina, C.; Falletta, E.; Rossi, M. Aerobic oxidation of glucose with gold catalyst: Hydrogen peroxide as intermediate and reagent. Adv. Synth. Catal. 2006, 348, 313–316.

    Article  Google Scholar 

  122. Wang, X.-X.; Wu, Q.; Shan, Z.; Huang, Q.-M. BSAstabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 2011, 26, 3614–3619.

    Article  Google Scholar 

  123. Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 4, 7451–7458.

    Article  Google Scholar 

  124. Ansar, S. M.; Kitchens, C. L. Impact of gold nanoparticle stabilizing ligands on the colloidal catalytic reduction of 4-nitrophenol. ACS Catal. 2016, 6, 5553–5560.

    Article  Google Scholar 

  125. Lien, C.-W.; Huang, C.-C.; Chang, H.-T. Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem. Commun. 2012, 48, 7952–7954.

    Article  Google Scholar 

  126. Herne, T. M.; Tarlov, M. J. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920.

    Article  Google Scholar 

  127. Liu, J. W. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 2012, 14, 10485–10496.

    Article  Google Scholar 

  128. Weerathunge, P.; Ramanathan, R.; Shukla, R.; Sharma, T. K.; Bansal, V. Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 2014, 86, 11937–11941.

    Article  Google Scholar 

  129. Wang, C. S.; Liu, C.; Luo, J. B.; Tian, Y. P.; Zhou, N. D. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2016, 936, 75–82.

    Article  Google Scholar 

  130. Hu, J. T.; Ni, P. J.; Dai, H. C.; Sun, Y. J.; Wang, Y. L.; Jiang, S.; Li, Z. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles. Analyst 2015, 140, 3581–3586.

    Article  Google Scholar 

  131. Lang, N. J.; Liu, B. W.; Liu, J. W. Characterization of glucose oxidation by gold nanoparticles using nanoceria. J. Colloid Interface Sci. 2014, 428, 78–83.

    Article  Google Scholar 

  132. Chen, D.; Feng, H. B.; Li, J. H. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053.

    Article  Google Scholar 

  133. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    Article  Google Scholar 

  134. Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 2014, 43, 5288–5301.

    Article  Google Scholar 

  135. Liu, B. W.; Salgado, S.; Maheshwari, V.; Liu, J. W. DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 2016, 26, 41–49.

    Article  Google Scholar 

  136. Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem.—Eur. J. 2010, 16, 3617–3621.

    Article  Google Scholar 

  137. Wang, X. H.; Qu, K. G.; Xu, B. L.; Ren, J. S.; Qu, X. G. Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res. 2011, 4, 908–920.

    Article  Google Scholar 

  138. Yang, Z. T.; Qian, J.; Yang, X. W.; Jiang, D.; Du, X. J.; Wang, K.; Mao, H. P.; Wang, K. A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens. Bioelectron. 2015, 65, 39–46.

    Article  Google Scholar 

  139. Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

    Article  Google Scholar 

  140. Dong, Y.; Li, J.; Shi, L.; Guo, Z. G. Iron impurities as the active sites for peroxidase-like catalytic reaction on graphene and its derivatives. ACS Appl. Mater. Interfaces 2015, 7, 15403–15413.

    Article  Google Scholar 

  141. Šljukic, B.; Banks, C. E.; Compton, R. G. Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett. 2006, 6, 1556–1558.

    Article  Google Scholar 

  142. Zhao, R. S.; Zhao, X.; Gao, X. F. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chem.—Eur. J. 2015, 21, 960–964.

    Article  Google Scholar 

  143. Song, Y. J.; Chen, Y.; Feng, L. Y.; Ren, J. S.; Qu, X. G. Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chem. Commun. 2011, 47, 4436–4438.

    Article  Google Scholar 

  144. Hu, C.; Xi, Q.; Ge, J.; Luo, F.-Y.; Tang, L.-J.; Jiang, J.-H.; Yu, R.-Q. Graphene-hemin hybrid nanosheets as a labelfree colorimetric platform for DNA and small molecule assays. RSC Adv. 2014, 4, 64252–64257.

    Article  Google Scholar 

  145. Xue, T.; Jiang, S.; Qu, Y. Q.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C.-Y.; Kaner, R.; Huang, Y.; Duan, X. F. Graphenesupported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem., Int. Ed. 2012, 51, 3822–3825.

    Article  Google Scholar 

  146. Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed. 2009, 48, 4785–4787.

    Article  Google Scholar 

  147. Liu, B. W.; Sun, Z. Y.; Zhang, X.; Liu, J. W. Mechanisms of DNA sensing on graphene oxide. Anal. Chem. 2013, 85, 7987–7993.

    Article  Google Scholar 

  148. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.

    Article  Google Scholar 

  149. Lu, G.; Maragakis, P.; Kaxiras, E. Carbon nanotube interaction with DNA. Nano Lett. 2005, 5, 897–900.

    Article  Google Scholar 

  150. Staii, C.; Johnson, A. T.; Chen, M.; Gelperin, A. DNAdecorated carbon nanotubes for chemical sensing. Nano Lett. 2005, 5, 1774–1778.

    Article  Google Scholar 

  151. Zhang, Z. J.; Liu, B. W.; Liu, J. W. Molecular imprinting for substrate selectivity and enhanced activity of enzyme mimics. Small, in press, DOI: 10.1002/smll.201602730.

Download references

Acknowledgements

Funding for work from the Liu lab at the University of Waterloo is from the Canadian Foundation for Innovation, and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juewen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Liu, J. Surface modification of nanozymes. Nano Res. 10, 1125–1148 (2017). https://doi.org/10.1007/s12274-017-1426-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1426-5

Keywords

Navigation