Skip to main content
Log in

Non-FCC rich Au crystallites exhibiting unusual catalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bipyramidal Au microcrystallites have been synthesized by thermalizing a Au-organic complex in the presence of Ag(I) ions, the latter acting as a shape-directing agent. With a highly corrugated morphology leading to strain-induced non-face-centered cubic (non-FCC) Au phases, the non-FCC portion can be tuned by varying the Ag/Au ratio, as verified by diffraction measurements. For a Ag/Au ratio of 0.34, the non-FCC Au portion was as high as 85%. X-ray microdiffraction and electron diffraction measurements reveal that the non-FCC contribution comes primarily from bipyramids, while other microcrystallites, namely, tetrahexahedrons and hexagrams, host non-FCC phases only at the edges and, to an even lesser extent, at the corners. When used as a catalyst for p-nitrophenol reduction, the non-FCC microcrystallites exhibit a significantly enhanced activity compared to FCC Au, which shows only negligible activity. These results are in accordance with trends in the values of two descriptors of reactivity calculated from first principles: The effective coordination number is found to decrease and the d-band center is found to increase in energy going from the FCC to the non-FCC phases of Au. Our findings contradict the general notion that Au is catalytically active only in nanodimensions and is otherwise inert; in this system, its activity arises from the non-FCC phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McMahon, M. I.; Nelmes, R. J. High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 2006, 35, 943–963.

    Article  Google Scholar 

  2. Dubrovinsky, L.; Dubrovinskaia, N.; Crichton, W. A.; Mikhaylushkin, A. S.; Simak, S. I.; Abrikosov, I. A.; de Almeida, J. S.; Ahuja, R.; Luo, W.; Johansson, B. Noblest of all metals is structurally unstable at high pressure. Phys. Rev. Lett. 2007, 98, 045503.

    Article  Google Scholar 

  3. Singh, A.; Ghosh, A. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. J. Phys. Chem. C 2008, 112, 3460–3463.

    Article  Google Scholar 

  4. Sun, Y. G.; Ren, Y.; Liu, Y. Z.; Wen, J. G.; Okasinski, J. S.; Miller, D. J. Ambient-stable tetragonal phase in silver nanostructures. Nat. Commun. 2012, 3, 971.

    Article  Google Scholar 

  5. Li, Z.; Okasinski, J. S.; Almer, J. D.; Ren, Y.; Zuo, X. B.; Sun, Y. G. Quantitative determination of fragmentation kinetics and thermodynamics of colloidal silver nanowires by in situ high-energy synchrotron X-ray diffraction. Nanoscale 2014, 6, 365–370.

    Article  Google Scholar 

  6. Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

    Article  Google Scholar 

  7. Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 2015, 6, 7684.

    Article  Google Scholar 

  8. Zheng, H.; Cao, A. J.; Weinberger, C. R.; Huang, J. Y.; Du, K.; Wang, J. B.; Ma, Y. Y.; Xia, Y. N.; Mao, S. X. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 2010, 1, 144.

    Article  Google Scholar 

  9. Mettela, G.; Bhogra, M.; Waghmare, U. V.; Kulkarni, G. U. Ambient stable tetragonal and orthorhombic phases in pentatwinned bipyramidal Au microcrystals. J. Am. Chem. Soc. 2015, 137, 3024–3030.

    Article  Google Scholar 

  10. Mettela, G.; Boya, R.; Singh, D.; Kumar, G. V. P.; Kulkarni, G. U. Highly tapered pentagonal bipyramidal Au microcrystals with high index faceted corrugation: Synthesis and optical properties. Sci. Rep. 2013, 3, 1793.

    Article  Google Scholar 

  11. Lu, X. M.; Au, L.; McLellan, J.; Li, Z.-Y.; Marquez, M.; Xia, Y. N. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1769.

    Article  Google Scholar 

  12. John, N. S.; Thomas, P. J.; Kulkarni, G. U. Self-assembled hybrid bilayers of palladium alkanethiolates. J. Phys. Chem. B 2003, 107, 11376–11381.

    Article  Google Scholar 

  13. Zheng, Y. Q.; Tao, J.; Liu, H. Y.; Zeng, J.; Yu, T.; Ma, Y. Y.; Moran, C.; Wu, L. J.; Zhu, Y. M.; Liu, J. Y. et al. Facile synthesis of gold nanorice enclosed by high-index facets and its application for CO oxidation. Small 2011, 7, 2307–2312.

    Article  Google Scholar 

  14. Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. Discovery of face-centered-cubic ruthenium nanoparticles: Facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 2013, 135, 5493–5496.

    Article  Google Scholar 

  15. Liu, J.-X.; Su, H.-Y.; Sun, D.-P.; Zhang, B.-Y.; Li, W.-X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J. Am. Chem. Soc. 2013, 135, 16284–16287.

    Article  Google Scholar 

  16. Stratakis, M.; Garcia, H. Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chem. Rev. 2012, 112, 4469–4506.

    Article  Google Scholar 

  17. Li, J.; Liu, C.-Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426–8430.

    Article  Google Scholar 

  18. Rashid, M. H.; Bhattacharjee, R. R.; Kotal, A.; Mandal, T. K. Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir 2006, 22, 7141–7143.

    Article  Google Scholar 

  19. Pushpa, R.; Ghosh, P.; Narasimhan, S.; de Gironcoli, S. Effective coordination as a predictor of adsorption energies: A model study of NO on Rh(100) and Rh/MgO(100) surfaces. Phys. Rev. B 2009, 79, 165406.

    Article  Google Scholar 

  20. Ghosh, P.; Pushpa, R.; de Gironcoli, S.; Narasimhan, S. Effective coordination number: A simple indicator of activation energies for NO dissociation on Rh(100) surfaces. Phys. Rev. B 2009, 80, 233406.

    Article  Google Scholar 

  21. Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

    Article  Google Scholar 

  22. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

    Article  Google Scholar 

  23. Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

    Article  Google Scholar 

  24. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  25. Van der bilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  Google Scholar 

  26. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

    Article  Google Scholar 

  27. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060–3083.

    Article  Google Scholar 

  28. Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. C. N. R. Rao for his constant encouragement. We thank Mr. B. N. Rao for his assistance in profile fitting. G. M. thanks CSIR, India, for a fellowship. S. N. acknowledges funding from the Sheikh Saqr Laboratory of ICMS, JNCASR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giridhar U. Kulkarni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mettela, G., Mammen, N., Joardar, J. et al. Non-FCC rich Au crystallites exhibiting unusual catalytic activity. Nano Res. 10, 2271–2279 (2017). https://doi.org/10.1007/s12274-017-1417-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1417-y

Keywords

Navigation