Skip to main content
Log in

Facet selective etching of Au microcrystallites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-symmetry crystals exhibit isotropic properties. Inducing anisotropy, e.g., by facet selective etching, is considered implausible in face-centered cubic (FCC) metals, particularly gold, which, in addition to being an FCC, is noble. We report for the first time the facet selective etching of Au microcrystals obtained in the form of cuboctahedra and pentagonal rods from the thermolysis of a goldorganic precursor. The selective etching of {111} and {100} facets was achieved using a capping method in which tetraoctylammonium cations selectively cap the {111} facets while Br ions protect the {100} facets. The exposed facets are oxidized by O2/Cl, yielding a variety of interesting geometries. The facet selective etching of the Au microcrystallites is governed only by the nature of the facets; the geometry of the microcystallite does not appear to play a significant role. The etched surfaces appear rough, but a closer examination reveals well-defined corrugations that are indexable to high hkl values. Such surfaces exhibit enhanced Raman activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H. Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc., 1990, 137 3612–3626.

    Article  Google Scholar 

  2. Leancu, R.; Moldovan, N.; Csepregi, L.; Lang, W. Anisotropic etching of germanium. Sensor. Actuat. A-Phys, 1995, 46 35–37.

    Article  Google Scholar 

  3. Ng, H. M.; Weimann, N. G.; Chowdhury, A. GaN nanotip pyramids formed by anisotropic etching. J. Appl. Phys., 2003, 94 650–653.

    Article  Google Scholar 

  4. Kan, C. X.; Wang, C. S.; Li, H. C.; Qi, J. S.; Zhu, J. J.; Li, Z. S.; Shi, D. N. Gold microplates with well-defined shapes. Small, 2010, 6 1768–1775.

    Article  Google Scholar 

  5. Magnussen, O. M. Ordered anion adlayers on metal electrode surfaces. Chem. Rev., 2002, 102 679–726.

    Article  Google Scholar 

  6. Kilin, D. S.; Prezhdo, O. V.; Xia, Y. N. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett., 2008, 458 113–116.

    Article  Google Scholar 

  7. Liu, M. C.; Zheng, Y. Q.; Zhang, L.; Guo, L. J.; Xia, Y. N. Transformation of Pd nanocubes into octahedra with controlled sizes by maneuvering the rates of etching and regrowth. J. Am. Chem. Soc., 2013, 135 11752–11755.

    Article  Google Scholar 

  8. Meena, S. K.; Sulpizi, M. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations. Langmuir, 2013, 29 14954–14961.

    Article  Google Scholar 

  9. Long, R.; Zhou, S.; Wiley, B. J.; Xiong, Y. J. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chem. Soc. Rev., 2014, 43 6288–6310.

    Article  Google Scholar 

  10. Kou, X. S.; Ni, W. H.; Tsung, C.-K.; Chan, K.; Lin, H.-Q.; Stucky, G. D.; Wang, J. F. Growth of gold bipyramids with improved yield and their curvature-directed oxidation. Small, 2007, 3 2103–2113.

    Article  Google Scholar 

  11. Rodríguez-Fernandez, J.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzá n, L. M. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B, 2005, 109 14257–14261.

    Article  Google Scholar 

  12. Zou, R. X.; Guo, X.; Yang, J.; Li, D. D.; Peng, F.; Zhang, L.; Wang, H. J.; Yu, H. Selective etching of gold nanorods by ferric chloride at room temperature. CrystEngComm, 2009, 11 2797–2803.

    Article  Google Scholar 

  13. Chen, Z. P.; Liu, R. L.; Wang, S. S.; Qu, C. L.; Chen, L. X.; Wang, Z. Colorimetric sensing of copper(II) based on catalytic etching of gold nanorods. RSC Adv., 2013, 3 13318–13323.

    Article  Google Scholar 

  14. Wen, T.; Zhang, H.; Tang, X. P.; Chu, W. G.; Liu, W. Q.; Ji, Y. L.; Hu, Z. J.; Hou, S.; Hu, X. N.; Wu, X. C. Copper ion assisted reshaping and etching of gold nanorods: Mechanism studies and applications. J. Phys. Chem. C, 2013, 117 25769–25777.

    Article  Google Scholar 

  15. Dai, D. G.; Xu, D.; Cheng, X. D.; He, Y. Direct imaging of single gold nanoparticle etching: Sensitive detection of lead ions. Anal. Methods, 2014, 6 4507–4511.

    Article  Google Scholar 

  16. Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc., 2009, 132 268–274.

    Article  Google Scholar 

  17. Zhang, J. F.; Feng, C.; Deng, Y. D.; Liu, L.; Wu, Y. T.; Shen, B.; Zhong, C.; Hu, W. B. Shape-controlled synthesis of palladium single-crystalline nanoparticles: The effect of hcl oxidative etching and facet-dependent catalytic properties. Chem. Mater., 2014, 26 1213–1218.

    Article  Google Scholar 

  18. Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir, 2002, 18 922–927.

    Article  Google Scholar 

  19. Shao, J. R.; Josephs, E. A.; Lee, C.; Lopez, A.; Ye, T. Electrochemical etching of gold within nanoshaved selfassembled monolayers. ACS Nano, 2013, 7 5421–5429.

    Article  Google Scholar 

  20. Ye, S.; Ishibashi, C.; Uosaki, K. Anisotropic dissolution of an Au(111) electrode in perchloric acid solution containing chloride anion investigated by in situ STM-The important role of adsorbed chloride anion. Langmuir, 1999, 15 807–812.

    Article  Google Scholar 

  21. Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Body-or tipcontrolled reactivity of gold nanorods and their conversion to particles through other anisotropic structures. Langmuir, 2007, 23 9463–9471.

    Article  Google Scholar 

  22. Saa, L.; Coronado-Puchau, M.; Pavlov, V.; Liz-Marzan, L. M. Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale, 2014, 6 7405–7409.

    Article  Google Scholar 

  23. Tsung, C. K.; Kou, X. S.; Shi, Q. H.; Zhang, J. P.; Yeung, M. H.; Wang, J. F.; Stucky, G. D. Selective shortening of singlecrystalline gold nanorods by mild oxidation. J. Am. Chem. Soc., 2006, 128 5352–5353.

    Article  Google Scholar 

  24. Fan, N. N.; Yang, Y.; Wang, W. F.; Zhang, L. J.; Chen, W.; Zou, C.; Huang, S. M. Selective etching induces selective growth and controlled formation of various platinum nanostructures by modifying seed surface free energy. ACS Nano, 2012, 6 4072–4082.

    Article  Google Scholar 

  25. Radha, B.; Arif, M.; Datta, R.; Kundu, T. K.; Kulkarni, G. U. Movable Au microplates as fluorescence enhancing substrates for live cells. Nano Res., 2010, 3 738–747.

    Article  Google Scholar 

  26. Radha, B.; Kulkarni, G. U. A real time microscopy study of the growth of giant au microplates. Cryst. Growth Des., 2011, 11 320–327.

    Article  Google Scholar 

  27. Zhang, Z.-C.; Nosheen, F.; Zhang, J.-C.; Yang, Y.; Wang, P.-P.; Zhuang, J.; Wang, X. Growth of concave polyhedral Pd nanocrystals with 32 facets through in situ facet-selective etching. ChemSusChem, 2013, 6 1893–1897.

    Article  Google Scholar 

  28. Levinstein, H. J.; Robinson, W. H. Etch pits at dislocations in silver single crystals. J. Appl. Phys., 1962, 33 3149–3152.

    Article  Google Scholar 

  29. Radha, B.; Kiruthika, S.; Kulkarni, G. U. Metal anion–alkyl ammonium complexes as direct write precursors to produce nanopatterns of metals, nitrides, oxides, sulfides, and alloys. J. Am. Chem. Soc., 2011, 133 12706–12713.

    Article  Google Scholar 

  30. Gilroy, K. D.; Farzinpour, P.; Sundar, A.; Tan, T.; Hughes, R. A.; Neretina, S. Substrate-based galvanic replacement reactions carried out on heteroepitaxially formed silver templates. Nano Res., 2013, 6 418–428.

    Article  Google Scholar 

  31. Pileni, M. P. Supra-and nanocrystallinities: A new scientific adventure. J. Phys.: Condens. Matter, 2011, 23 503102.

  32. Personick, M. L.; Langille, M. R.; Zhang, J.; Harris, N.; Schatz, G. C.; Mirkin, C. A. Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J. Am. Chem. Soc., 2011, 133 6170–6173.

    Article  Google Scholar 

  33. Zhang, J. A.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S. Y.; Mirkin, C. A. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc., 2010, 132 14012–14014.

    Article  Google Scholar 

  34. Tsao, Y. H.; Yang, S. X.; Evans, D. F.; Wennerstroem, H. Interactions between hydrophobic surfaces. Dependence on temperature and alkyl chain length. Langmuir, 1991, 7 3154–3159.

    Google Scholar 

  35. Mettela, G.; Boya, R.; Singh, D.; Kumar, G. V. P.; Kulkarni, G. U. Highly tapered pentagonal bipyramidal Au microcrystals with high index faceted corrugation: Synthesis and optical properties. Sci. Rep., 2013, 3 1793.

  36. Mettela, G.; Bhogra, M.; Waghmare, U. V.; Kulkarni, G. U. Ambient stable tetragonal and orthorhombic phases in pentatwinned bipyramidal Au microcrystals. J. Am. Chem. Soc., 2015, 137 3024–3030.

    Article  Google Scholar 

  37. Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett., 2011, 11 3394–3398.

    Article  Google Scholar 

  38. Mettela, G.; Siddhanta, S.; Narayana, C.; Kulkarni, G. U. Nanocrystalline Ag microflowers as a versatile SERS platform. Nanoscale, 2014, 6 7480–7488.

    Article  Google Scholar 

  39. Zhang, Z. Y.; Chen, Z. P.; Pan, D. W.; Chen, L. X. Fentonlike reaction-mediated etching of gold nanorods for visual detection of Co2+. Langmuir, 2015, 31 643–650.

    Article  Google Scholar 

  40. Luthra, S. S.; Yang, X. J.; dos Santos, L. M. F.; White, L. S.; Livingston, A. G. Phase-transfer catalyst separation and re-use by solvent resistant nanofiltration membranes. Chem. Commun. 2001, 1468–1469.

    Google Scholar 

  41. Lindquist, N. C.; Nagpal, P.; Lesuffleur, A.; Norris, D. J.; Oh, S.-H. Three-dimensional plasmonic nanofocusing. Nano Lett., 2010, 10 1369–1373.

    Article  Google Scholar 

  42. Brolo, A. G.; Irish, D. E.; Szymanski, G.; Lipkowski, J. Relationship between SERS intensity and both surface coverage and morphology for pyrazine adsorbed on a polycrystalline gold electrode. Langmuir, 1998, 14 517–527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giridhar U. Kulkarni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mettela, G., Kulkarni, G.U. Facet selective etching of Au microcrystallites. Nano Res. 8, 2925–2934 (2015). https://doi.org/10.1007/s12274-015-0797-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0797-8

Keywords

Navigation