Skip to main content
Log in

Effect of carrier screening on ZnO-based resistive switching memory devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The carrier screening effect occurs commonly in dielectric materials. It reduces the electric potential gradient, thus negatively affecting the functionality of resistive random access memory (RRAM) devices. An Au/ZnO film/Al-doped ZnO device fabricated in this work exhibited no resistive switching (RS), which was attributed to the carrier screening effect. Therefore, annealing was used for alleviating the screening effect, significantly enhancing the RS property. In addition, different on/off ratios were obtained for various bias values, and the screening effect was accounted for by investigating electron transport mechanisms. Furthermore, different annealing temperatures were employed to modulate the free carrier concentration in ZnO films to alleviate the screening effect. The maximal on/off ratio reached 105 at an annealing temperature of 600 °C, yielding the lowest number of free carriers and the weakest screening effect in ZnO films. This work investigates the screening effect in RS devices. The screening effect not only modulates the characteristics of memory devices but also provides insight into the mechanism of RS in these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.

    Article  Google Scholar 

  2. Jo, S. H.; Kim, K. H.; Lu, W. High-density crossbar arrays based on a Si memristive system. Nano Lett. 2009, 9, 870–874.

    Article  Google Scholar 

  3. Driscoll, T.; Kim, H. T.; Chae, B. G.; Kim, B. J.; Lee, Y. W.; Jokerst, N. M.; Palit, S.; Smith, D. R.; Di Ventra, M.; Basov, D. N. Memory metamaterials. Science 2009, 325, 1518–1521.

    Article  Google Scholar 

  4. Borghetti, J.; Snider, G. S.; Kuekes, P. J.; Yang, J. J.; Stewart, D. R.; Williams, R. S. 'Memristive' switches enable ‘stateful’ logic operations via material implication. Nature 2010, 464, 873–876.

    Article  Google Scholar 

  5. Yao, J.; Lin, J.; Dai, Y. H.; Ruan, G. D.; Yan, Z.; Li, L.; Zhong, L.; Natelson, D.; Tour, J. M. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 2012, 3, 1101.

    Article  Google Scholar 

  6. Bessonov, A. A.; Kirikova, M. N.; Petukhov, D. I.; Allen, M.; Ryhanen, T.; Bailey, M. J. A. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 2015, 14, 199–204.

    Article  Google Scholar 

  7. Lee, M. J.; Lee, C. B.; Lee, D.; Lee, S. R.; Chang, M.; Hur, J. H.; Kim, Y. B.; Kim, C. J.; Seo, D. H.; Seo, S. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x/TaO2–x bilayer structures. Nat. Mater. 2011, 10, 625–630.

    Article  Google Scholar 

  8. Linn, E.; Rosezin, R.; Kugeler, C.; Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 2010, 9, 403–406.

    Article  Google Scholar 

  9. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

    Article  Google Scholar 

  10. Wedig, A.; Luebben, M.; Cho, D. Y.; Moors, M.; Skaja, K.; Rana, V.; Hasegawa, T.; Adepalli, K. K.; Yildiz, B.; Waser, R. et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 2016, 11, 67–74.

    Article  Google Scholar 

  11. Banerjee, W.; Xu, X. X.; Liu, H. T.; Lv, H. B.; Liu, Q.; Sun, H. T.; Long, S. B.; Liu, M. Occurrence of resistive switching and threshold switching in atomic layer deposited ultrathin (2 nm) aluminium oxide crossbar resistive random access memory. IEEE Electron Dev. Lett. 2015, 36, 333–335.

    Article  Google Scholar 

  12. Wang, M.; Bi, C.; Li, L.; Long, S. B.; Liu, Q.; Lv, H. B.; Lu, N.; Sun, P. X.; Liu, M. Thermoelectric seebeck effect in oxide-based resistive switching memory. Nat. Commun. 2014, 5, 4598.

    Article  Google Scholar 

  13. Zhang, J.; Yang, H.; Zhang, Q.-L.; Dong, S. R.; Luo, J. K. Structural, optical, electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition. Appl. Surf. Sci. 2013, 282, 390–395.

    Article  Google Scholar 

  14. Huang, C. H.; Huang, J. S.; Lai, C. C.; Huang, H. W.; Lin, S. J.; Chueh, Y. L. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Appl. Mater. Interfaces 2013, 5, 6017–6023.

    Article  Google Scholar 

  15. Lin, S. M.; Huang, J. S.; Chang, W. C.; Hou, T. C.; Huang, H. W.; Huang, C. H.; Lin, S. J.; Chueh, Y. L. Single-step formation of ZnO/ZnWOx bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states. ACS Appl. Mater. Interfaces 2013, 5, 7831–7837.

    Article  Google Scholar 

  16. Huang, C. H.; Huang, J. S.; Lin, S. M.; Chang, W. Y.; He, J. H.; Chueh, Y. L. ZnO1–x nanorod arrays/ZnO thin film bilayer structure: From homojunction diode and highperformance memristor to complementary 1D1R application. ACS Nano 2012, 6, 8407–8414.

    Article  Google Scholar 

  17. Yang, Y. C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F. Fully roomtemperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 2009, 9, 1636–1643.

    Article  Google Scholar 

  18. Long, S. B.; Perniola, L.; Cagli, C.; Buckley, J.; Lian, X. J.; Miranda, E.; Pan, F.; Liu, M.; Suñé, J. Voltage and powercontrolled regimes in the progressive unipolar RESET transition of HfO2-based RRAM. Sci. Rep. 2013, 3, 2929.

    Google Scholar 

  19. Long, S. B.; Lian, X. J.; Cagli, C.; Perniola, L.; Miranda, E.; Liu, M.; Suñé, J. A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. IEEE Electron Dev. Lett. 2013, 34, 999–1001.

    Article  Google Scholar 

  20. Cho, B.; Song, S.; Ji, Y.; Kim, T.-W.; Lee, T. Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 2011, 21, 2806–2829.

    Article  Google Scholar 

  21. Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Zhao, Y. G.; Shen, Y. W.; Liao, Q. L.; Zhang, Y. High on-off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing. ACS Appl Mater. Interfaces 2015, 7, 7382–7388.

    Article  Google Scholar 

  22. Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

    Article  Google Scholar 

  23. Shi, J.; Starr, M. B.; Wang, X. D. Band structure engineering at heterojunction interfaces via the piezotronic effect. Adv. Mater. 2012, 24, 4683–4691.

    Article  Google Scholar 

  24. Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarizationenhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.

    Article  Google Scholar 

  25. Carcia, P. F.; McLean, R. S.; Reilly, M. H. High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 2006, 88, 123509.

    Article  Google Scholar 

  26. Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Shen, Y. W.; Zhang, Y. Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor. Nano Res. 2016, 9, 1116–1124.

    Article  Google Scholar 

  27. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663.

    Article  Google Scholar 

  28. Qi, J. J.; Hu, X. F.; Wang, Z. Z.; Li, X.; Liu, W.; Zhang, Y. A self-powered ultraviolet detector based on a single ZnO microwire/p-Si film with double heterojunctions. Nanoscale 2014, 6, 6025–6029.

    Article  Google Scholar 

  29. An, J. U.; Yun, H. J.; Jeong, K. S.; Kim, Y. M.; Yang, S. D.; Kim, S. H.; Kim, J. S.; Ko, Y. U.; Lee, H. D.; Lee, G. W. Improvement in n-ZnO/p-Si diode properties using ZnO/AZO homogeneous metal contact. Jpn. J. Appl. Phys. 2014, 53, 08NJ03.

    Article  Google Scholar 

  30. Lampert, M. A. Simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 1956, 103, 1648–1656.

    Article  Google Scholar 

  31. Zeng, H. B.; Duan, G. T.; Li, Y.; Yang, S. K.; Xu, X. X.; Cai, W. P. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561–572.

    Article  Google Scholar 

  32. Park, J.; Lee, S.; Lee, J.; Yong, K. A light incident angle switchable ZnO nanorod memristor: Reversible switching behavior between two non-volatile memory devices. Adv. Mater. 2013, 25, 6423–6429.

    Google Scholar 

  33. Hu, W.; Zou, L. L.; Chen, X. M.; Qin, N.; Li, S. W.; Bao, D. H. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method. ACS Appl. Mater. Interfaces 2014, 6, 5012–5017.

    Article  Google Scholar 

  34. Sohn, J. I.; Cha, S. N.; Song, B. G.; Lee, S.; Kim, S. M.; Ku, J.; Kim, H. J.; Park, Y. J.; Choi, B. L.; Wang, Z. L. et al. Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ. Sci. 2013, 6, 97–104.

    Article  Google Scholar 

  35. Lu, S. N.; Qi, J. J.; Gu, Y. S.; Liu, S.; Xu, Q. K.; Wang, Z. Z.; Liang, Q. J.; Zhang, Y. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale 2015, 7, 4461–4467.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51527802, 51372023, and 51232001), Beijing Municipal Science & Technology Commission, the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Yan or Yue Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yan, X., Zheng, X. et al. Effect of carrier screening on ZnO-based resistive switching memory devices. Nano Res. 10, 77–86 (2017). https://doi.org/10.1007/s12274-016-1267-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1267-7

Keywords

Navigation