Skip to main content
Log in

Hopping conduction properties of the Sn:SiO X thin-film resistance random access memory devices induced by rapid temperature annealing procedure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bipolar switching properties and electrical conduction mechanism in Sn:SiO X thin-film RRAM devices were investigated and discussed. To complete the resistive switching properties of the stannum doped into silicon oxide thin films, the RTA-treated Sn:SiO X thin-film RRAM devices were investigated and discussed. In addition, the improvement qualities and electrical switching properties of the RTA-treated Sn:SiO X thin-film RRAM devices were carried out XPS, FT-IR, and IV measurement. The ohmic conduction with metal-like behavior and hopping conduction dependent activation energy properties by the Arrhenius plot equation in LRS of the  Sn:SiO X thin films was investigated. The activation energy and hopping distance for the RTA-treated thin films were found to be 0.018 eV and 1.1 nm, respectively. For the compatibility with the IC processes, the RTA treatment was a promising method for the Sn:SiO X thin-film RRAM nonvolatile memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.T. Tsai, T.C. Chang, P.T. Liu, P.Y. Yang, Y.C. Kuo, K.T. Kin, P.L. Chang, F.S. Huang, Appl. Phys. Lett. 91(1), 012109 (2007)

    Article  ADS  Google Scholar 

  2. C.T. Tsai, T.C. Chang, K.T. Kin, P.T. Liu, P.Y. Yang, C.F. Weng, F.S. Huang, J. Appl. Phys. 103(7), 074108 (2008)

    Article  ADS  Google Scholar 

  3. M.C. Chen, T.C. Chang, S.Y. Huang, K.C. Chang, H.W. Li, S.C. Chen, J. Lu, Y. Shi, Appl. Phys. Lett. 94, 162111 (2009)

    Article  ADS  Google Scholar 

  4. K.H. Chen, T.C. Chang, G.C. Chang, Y.E. Hsu, Y.C. Chen, H.Q. Xu, Appl. Phys. A: Mater. Sci. Process. 99(1), 291–295 (2010)

    Article  ADS  Google Scholar 

  5. P.C. Yang, T.C. Chang, S.C. Chen, Y.S. Lin, H.C. Huang, D.S. Gan, Electrochem. Solid State Lett. 14(2), H93–H95 (2011)

    Article  Google Scholar 

  6. Y.E. Syu, T.C. Chang, T.M. Tsai, Y.C. Hung, K.C. Chang, M.J. Tsai, M.J. Kao, S.M. Sze, IEEE Electron Device Lett. 32(4), 545–547 (2011)

    Article  ADS  Google Scholar 

  7. L.W. Feng, C.Y. Chang, Y.F. Chang, W.R. Chen, S.Y. Wang, P.W. Chiang, T.C. Chang, Appl. Phys. Lett. 96, 052111 (2010)

    Article  ADS  Google Scholar 

  8. L.W. Feng, C.Y. Chang, Y.F. Chang, T.C. Chang, S.Y. Wang, S.C. Chen, C.C. Lin, S.C. Chen, P.W. Chiang, Appl. Phys. Lett. 96, 222108 (2010)

    Article  ADS  Google Scholar 

  9. K.H. Chen, Y.C. Chen, C.F. Yang, T.C. Chang, J. Phys. Chem. Solids 69, 461 (2008)

    Article  ADS  Google Scholar 

  10. C.F. Yang, K.H. Chen, Y.C. Chen, T.C. Chang, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 54, 1726 (2007)

    Article  Google Scholar 

  11. C.F. Yang, K.H. Chen, Y.C. Chen, T.C. Chang, Appl. Phys. A 90, 329 (2008)

    Article  ADS  Google Scholar 

  12. K.H. Chen, Y.C. Chen, Z.S. Chen, C.F. Yang, T.C. Chang, Appl. Phys. A 89, 533 (2007)

    Article  ADS  Google Scholar 

  13. K.H. Chen, C.H. Chang, C.M. Cheng, C.F. Yang, Appl. Phys. A 97, 919 (2009)

    Article  ADS  Google Scholar 

  14. K.H. Chen, C.M. Cheng, C.C. Shih, J.H. Tsai, Appl. Phys. A 103, 1173 (2011)

    Article  ADS  Google Scholar 

  15. C.M. Cheng, K.H. Chen, J.H. Tsai, C.L. Wu, Ceram. Int. 38, S87 (2012)

    Article  Google Scholar 

  16. C. Alessandro, F. Massimo, I. Daniele, F. Paolo, IEEE Electron Device Lett. 31(9), 1023–1025 (2010)

    Article  Google Scholar 

  17. T.Y. Tseng, H. Nalwa, Hand book of nanoceramics and their based nano devices (American Scientific Publishers, USA, 2009), pp. 175–176

    Google Scholar 

  18. Daniele Ielmini, J. Appl. Phys. 102(5), 054517 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Science Council of the Republic of China (NSC 102-2633-E-272-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Huang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KH., Chang, KC., Chang, TC. et al. Hopping conduction properties of the Sn:SiO X thin-film resistance random access memory devices induced by rapid temperature annealing procedure. Appl. Phys. A 119, 1609–1613 (2015). https://doi.org/10.1007/s00339-015-9144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9144-x

Keywords

Navigation