Skip to main content
Log in

Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The strategy of combining highly conductive frameworks with abundant active sites is desirable in the preparation of alternative catalysts to commercial Pt/C for the oxygen reduction reaction (ORR). In this study, N-doped graphene (NG) and carbon nanotubes (CNT) were grown in-situ on Co-containing carbon nanofibers (CNF) to form three-dimensional (3D) interconnected networks. The NG and CNT bound the interlaced CNF together, facilitating electron transfer and providing additional active sites. The 3D interconnected fiber networks exhibited excellent ORR catalytic behavior with an onset potential of 0.924 V (vs. reversible hydrogen electrode) and a higher current density than Pt/C beyond 0.720 V. In addition, the hybrid system exhibited superior stability and methanol tolerance to Pt/C in alkaline media. This method can be extended to the design of other 3D interconnected network architectures for energy storage and conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, L.; Hu, L. P.; Li, J.; Wei, Z. D. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 2015, 8, 418–440.

    Article  Google Scholar 

  2. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  3. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  Google Scholar 

  4. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  5. Trogadas, P.; Fuller, T. F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5–42.

    Article  Google Scholar 

  6. Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

    Article  Google Scholar 

  7. Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2013, 53, 130–136.

    Article  Google Scholar 

  8. Yang, S. B.; Zhi, L. J.; Tang, K.; Feng, X. L.; Maier, J.; Mü llen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634–3640.

    Article  Google Scholar 

  9. Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

    Article  Google Scholar 

  10. Dou, S.; Shen, A. L.; Tao, L.; Wang, S. Y. Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction. Chem. Commun. 2014, 50, 10672–10675.

    Article  Google Scholar 

  11. Zhang, Y.; Zhuang, X. D.; Su, Y. Z.; Zhang, F.; Feng, X. L. Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7742–7746.

    Article  Google Scholar 

  12. Yang, S. B.; Feng, X. L.; Wang, X. C.; Mü llen, K. Graphenebased carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 2011, 50, 5339–5343.

    Article  Google Scholar 

  13. Zhao, A. Q.; Masa, J.; Schuhmann, W.; Xia, W. Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions. J. Phys. Chem. C 2013, 117, 24283–24291.

    Article  Google Scholar 

  14. Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

    Article  Google Scholar 

  15. Liu, D.; Zhang, X. P.; Sun, Z. C.; You, T. Y. Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 2013, 5, 9528–9531.

    Article  Google Scholar 

  16. Kumar, P. S.; Sundaramurthy, J.; Subramanian, S.; Babu, V. J.; Singh, G.; Allakhverdiev, S. I.; Ramakrishna, S. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ. Sci. 2014, 7, 3192–3222.

    Article  Google Scholar 

  17. Inagaki, M.; Yang, Y.; Kang, F. Y. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566.

    Article  Google Scholar 

  18. Guo, L. P.; Bai, J.; Liang, H. O.; Li, C. P.; Sun, W. Y.; Meng, Q. R. Preparation and application of carbon nanofiberssupported palladium nanoparticles catalysts based on electrospinning. J. Inorg. Mater. 2014, 29, 814–820.

    Article  Google Scholar 

  19. Zhang, C. L.; Yu, S. H. Nanoparticles meet electrospinning: Recent advances and future prospects. Chem. Soc. Rev. 2014, 43, 4423–4448.

    Article  Google Scholar 

  20. Wang, Y. D.; Han, C.; Zheng, D. C.; Lei, Y. P. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition. J. Mater. Chem. A 2014, 2, 9607–9612.

    Article  Google Scholar 

  21. Wang, H. G.; Yuan, S.; Ma, D. L.; Zhang, X. B.; Yan, J. M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681.

    Article  Google Scholar 

  22. Li, X. H.; Antonietti, M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 4572–4576.

    Article  Google Scholar 

  23. Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Networker, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.

    Article  Google Scholar 

  24. Dallmeyer, I.; Lin, L. T.; Li, Y. J.; Ko, F.; Kadla, J. F. Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol. Mater. Eng. 2014, 299, 540–551.

    Article  Google Scholar 

  25. Cheng, Y. L.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L. Y.; Li, T. Q.; Hu, Z. M.; Wang, B.; Wan, J.; Zhou, J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015, 15, 66–74.

    Article  Google Scholar 

  26. Ye, T. N.; Lv, L. B.; Li, X. H.; Xu, M.; Chen, J. S. Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6905–6909.

    Article  Google Scholar 

  27. Park, M.; Jung, Y. J.; Kim, J.; Lee, H. I.; Cho, J. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery. Nano Lett. 2013, 13, 4833–4839.

    Article  Google Scholar 

  28. Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

    Google Scholar 

  29. Zhang, B.; Huang, J. Q.; Kim, J. K. Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li-ion and Na-ion batteries. Adv. Funct. Mater. 2015, 25, 5222–5228.

    Article  Google Scholar 

  30. Lü, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611.

    Article  Google Scholar 

  31. Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Fang, D. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2014, 2, 20873–20881.

    Article  Google Scholar 

  32. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  33. Liu, Z. W.; Peng, F.; Wang, H. J.; Yu, H.; Zheng, W. X.; Yang, J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem., Int. Ed. 2011, 50, 3257–3261.

    Article  Google Scholar 

  34. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

    Article  Google Scholar 

  35. Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

    Article  Google Scholar 

  36. Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372–4376.

    Article  Google Scholar 

  37. Huang, D. K.; Luo, Y. P.; Li, S. H.; Zhang, B. Y.; Shen, Y.; Wang, M. K. Active catalysts based on cobalt oxide@cobalt/ N–C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Res. 2014, 7, 1054–1064.

    Article  Google Scholar 

  38. Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J.; Brü ckner, A.; Beller, M. Selective oxidation of alcohols to esters using heterogeneous Co3O4–N@C catalysts under mild conditions. J. Am. Chem. Soc. 2013, 135, 10776–10782.

    Article  Google Scholar 

  39. Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  40. Yan, M.; Song, W.; Chen, Z. H. In situ growth of a carbon interphase between carbon fibres and a polycarbosilanederived silicon carbide matrix. Carbon 2011, 49, 2869–2872.

    Article  Google Scholar 

  41. Wu, N.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Han, C. Flexible N-doped TiO2/C ultrafine fiber mat and its photocatalytic activity under simulated sunlight. Appl. Surf. Sci. 2014, 319, 136–142.

    Article  Google Scholar 

  42. Xie, S.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Guo, Y. Z.; Fang, D. A simply prepared flexible SiBOC ultrafine fiber mat with enhanced high-temperature stability and chemical resistance. RSC Adv. 2015, 5, 64911–64917.

    Article  Google Scholar 

  43. Choi, C. H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091.

    Article  Google Scholar 

  44. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.

    Article  Google Scholar 

  45. Kang, Y.; Chu, Z. Y.; Zhang, D. J.; Li, G. Y.; Jiang, Z. H.; Cheng, H. F.; Li, X. D. Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 2013, 61, 200–208.

    Article  Google Scholar 

  46. Wood, K. N.; O' Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.

    Article  Google Scholar 

  47. Artyushkova, K.; Kiefer, B.; Halevi, B.; Knop-Gericke, A.; Schlogl, R.; Atanassov, P. Density functional theory calculations of XPS binding energy shift for nitrogencontaining graphene-like structures. Chem. Commun. 2013, 49, 2539–2541.

    Article  Google Scholar 

  48. Lee, J. S.; Park, G. S.; Kim, S. T.; Liu, M. L.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3Cfunctionalized melamine foam. Angew. Chem., Int. Ed. 2013, 52, 1026–1030.

    Google Scholar 

  49. Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P. CoP as an acid-stable active electrocatalyst for the hydrogen-evolution reaction: Electrochemical synthesis, interfacial characterization and performance evaluation. J. Phys. Chem. C 2014, 118, 29294–29300.

    Article  Google Scholar 

  50. Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.

    Google Scholar 

  51. Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079.

    Article  Google Scholar 

  52. Kim, M.; Nam, D. H.; Park, H. Y.; Kwon, C.; Eom, K.; Yoo, S. J.; Jang, J. H.; Kim, H. J.; Cho, E.; Kwon, H. Cobalt–carbon nanofibers as an efficient support-free catalyst for oxygen reduction reaction with a systematic study of active site formation. J. Mater. Chem. A 2015, 3, 14284–14290.

    Article  Google Scholar 

  53. Wu, J. F.; Yuan, X. Z.; Martin, J. J.; Wang, H. J.; Zhang, J. J.; Shen, J.; Wu, S. H.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power. Sources 2008, 184, 104–119.

    Article  Google Scholar 

  54. Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/ carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

    Article  Google Scholar 

  55. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingde Wang or Yongpeng Lei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Wang, Y., Wang, Z. et al. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 9, 317–328 (2016). https://doi.org/10.1007/s12274-015-0911-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0911-y

Keywords

Navigation