Skip to main content
Log in

Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Direct writing of graphene patterns and devices may significantly facilitate the application of graphene-based flexible electronics. In terms of scalability and cost efficiency, inkjet printing is very competitive over other existing directwriting methods. However, it has been challenging to obtain highly stable and clog-free graphene-based ink. Here, we report an alternative and highly efficient technique to directly print a reducing reagent on graphene oxide film to form conductive graphene patterns. By this “inkjet reduction” method, without using any other microfabrication technique, conductive graphene patterns and devices for various applications are obtained. The ionic nature of the reductant ink makes it clog-free and stable for continuous and large-area printing. The method shows self-limited reduction feature, which enables electrical conductivity of graphene patterns to be tuned within 5 orders of magnitude, reaching as high as 8,000 S·m–1. Furthermore, this method can be extended to produce noble metal/graphene composite patterns. The devices, including transistors, biosensors, and surfaceenhanced Raman scattering substrates, demonstrate excellent functionalities. This work provides a new strategy to prepare large-area graphene-based devices that is low-cost and highly efficient, promising to advance research on graphenebased flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Rollto-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 2010, 5, 574–578.

    Article  Google Scholar 

  2. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  3. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101–105.

    Article  Google Scholar 

  4. Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotech. 2008, 3, 538–542.

    Article  Google Scholar 

  5. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    Article  Google Scholar 

  6. Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312.

    Article  Google Scholar 

  7. Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S. Y.; Hu, Y. K.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373–1376.

    Article  Google Scholar 

  8. Zhang, K.; Fu, Q.; Pan, N.; Yu, X. X.; Liu, J. Y.; Luo, Y.; Wang, X. P.; Yang, J. L.; Hou, J. G. Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nat. Commun. 2012, 3, 1194.

    Article  Google Scholar 

  9. Mativetsky, J. M.; Treossi, E.; Orgiu, E.; Melucci, M.; Veronese, G. P.; Samorì, P.; Palermo, V. Local current mapping and patterning of reduced graphene oxide. J. Am. Chem. Soc. 2010, 132, 14130–14136.

    Article  Google Scholar 

  10. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotech. 2011, 6, 496–500.

    Article  Google Scholar 

  11. Zhang, Y. L.; Guo, L.; Wei, S.; He, Y. Y.; Xia, H.; Chen, Q. D.; Sun, H.-B.; Xiao, F.-S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15–20.

    Article  Google Scholar 

  12. Strong, V.; Dubin, S.; El-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395–1403.

    Article  Google Scholar 

  13. Shin, K.-Y.; Hong, J.-Y.; Jang, J. Micropatterning of graphene sheets by inkjet printing and its wideband dipoleantenna application. Adv. Mater. 2011, 23, 2113–2118.

    Article  Google Scholar 

  14. Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem., Int. Ed. 2010, 49, 2154–2157.

    Article  Google Scholar 

  15. Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992–3006.

    Article  Google Scholar 

  16. Su, Y.; Du, J. H.; Sun, D. M.; Liu, C.; Cheng, H. M. Reduced graphene oxide with a highly restored p-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Res. 2013, 6, 842–852.

    Article  Google Scholar 

  17. Zhao, J. P.; Pei, S. F.; Ren, W. C.; Gao, L. B.; Cheng, H.-M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245–5252.

    Article  Google Scholar 

  18. Wang, J.; Liang, M. H.; Fang, Y.; Qiu, T. F.; Zhang, J.; Zhi, L. J. Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 2012, 24, 2874–2878.

    Article  Google Scholar 

  19. Han, D. X.; Han, T. T.; Shan, C. S.; Ivaska, A.; Niu, L. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 2010, 22, 2001–2008.

    Article  Google Scholar 

  20. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  Google Scholar 

  21. Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992.

    Article  Google Scholar 

  22. Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426–6432.

    Article  Google Scholar 

  23. Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Article  Google Scholar 

  24. Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H.-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474.

    Article  Google Scholar 

  25. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

    Article  Google Scholar 

  26. Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

    Article  Google Scholar 

  27. Mashimo, S.; Miura, N.; Umehara, T. The structure of water determined by microwave dielectric study on water mixtures with glucose, polysaccharides, and L-ascorbic acid. J. Chem. Phys. 1992, 97, 6759–6765.

    Article  Google Scholar 

  28. Choi, S.-J.; Choi, B.-G.; Park, S.-M. Electrochemical sensor for electrochemically inactive ß-D(+)-glucose using a-cyclodextrin template molecules. Anal. Chem. 2002, 74, 1998–2002.

    Article  Google Scholar 

  29. Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414.

    Article  Google Scholar 

  30. Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014, 343, 752–754.

    Article  Google Scholar 

  31. Su, Y.; Kravets, V. G.; Wong, S. L.; Waters, J.; Geim, A. K.; Nair, R. R. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 2014, 5, 4843.

    Article  Google Scholar 

  32. Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166–11173.

    Article  Google Scholar 

  33. Yu, X. X.; Cai, H. B.; Zhang, W. H.; Li, X. J.; Pan, N.; Luo, Y.; Wang, X. P.; Hou, J. G. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 2011, 5, 952–958.

    Article  Google Scholar 

  34. Zhou, Q.; Li, Z. C.; Yang, Y.; Zhang, Z. J. Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 2008, 41, 152007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhong Du or Huiming Cheng.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Jia, S., Du, J. et al. Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Res. 8, 3954–3962 (2015). https://doi.org/10.1007/s12274-015-0897-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0897-5

Keywords

Navigation