Skip to main content
Log in

Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An inkjet-printed graphene film is of great importance for next-generation flexible, low cost and high performance electronic devices. However, due to the limitation of the inkjet printing process, the electrical conductivity of inkjet-printed graphene films is limited to ∼10 S·cm−1, and achieving a high conductivity of the printed graphene films remains a big challenge. Here, we develop a “weak oxidation-vigorous exfoliation” strategy to tailor graphene oxide (GO) for meeting all the requirements of highly conductive inkjet-printed graphene films, including a more intact carbon plane and suitable size. The π-conjugated structure of the resulting graphene has been restored to a high degree, and its printed films show an ultrahigh conductivity of ∼420 S·cm−1, which is tens of times higher than previously reported results, suggesting that, aside from developing a highly efficient reduction method, tuning the GO structure could be an alternative way to produce high quality graphene sheets. Using inkjet-printed graphene patterns as source/drain/gate electrodes, and semiconducting single-walled carbon nanotubes (SWCNTs) as channels, we fabricated an all-carbon field effect transistor which shows excellent performance (an on/off ratio of ∼104 and a mobility of ∼8 cm2·V−1·s−1) compared to previously reported CNT-based transistors, promising the use of nanocarbon materials, graphene and SWCNTs in printed electronics, especially where high performance and flexibility are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Ann. Rev. Mater. Res. 2010, 40, 395–414.

    Article  CAS  Google Scholar 

  2. Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet printing-process and its applications. Adv. Mater. 2010, 22, 673–685.

    Article  CAS  Google Scholar 

  3. Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J. L.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.

    Article  CAS  Google Scholar 

  4. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126.

    Article  CAS  Google Scholar 

  5. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

    Article  CAS  Google Scholar 

  6. Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

    Article  CAS  Google Scholar 

  7. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H. R.; Song, Y. II. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 2010, 5, 574–578.

    Article  CAS  Google Scholar 

  8. Shin, K. Y.; Hong, J. Y.; Jang, J. Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater. 2011, 23, 2113–2118.

    Article  CAS  Google Scholar 

  9. Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. Allorganic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 2010, 49, 2154–2157.

    Article  CAS  Google Scholar 

  10. Zhang, L.; Liu, H. T.; Zhao, Y.; Sun, X. N.; Wen, Y. G.; Guo, Y. L.; Gao, X. K.; Di, C. A.; Yu, G.; Liu, Y. Q. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater. 2012, 24, 436–440.

    Article  CAS  Google Scholar 

  11. Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G. W.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992–3006.

    Article  CAS  Google Scholar 

  12. Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684.

    Article  CAS  Google Scholar 

  13. Hutchings, I. M. Ink-jet printing in micro-manufacturing: Opportunities and limitations. In 4m/Icomm 2009-the Global Conference on Micro Manufacture. Germany, Karlsruhe, 2009; pp 47–57.

    Google Scholar 

  14. Nirmalraj, P. N.; Lutz, T.; Kumar, S.; Duesberg, G. S.; Boland, J. J. Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett. 2011, 11, 16–22.

    Article  CAS  Google Scholar 

  15. Zhao, J. P.; Pei, S. F.; Ren, W. C.; Gao, L. B.; Cheng, H. M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245–5252.

    Article  CAS  Google Scholar 

  16. Su, C. Y.; Xu, Y. P.; Zhang, W. J.; Zhao, J. W.; Tang, X. H.; Tsai, C. H.; Li, L. J. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 2009, 21, 5674–5680.

    Article  CAS  Google Scholar 

  17. Zhou, X. F.; Liu, Z. P. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chem. Commun. 2010, 46, 2611–2613.

    Article  CAS  Google Scholar 

  18. Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474.

    Article  CAS  Google Scholar 

  19. Su, Y.; Pei, S. F.; Du, J. H.; Liu, W. B.; Liu, C.; Cheng, H. M. Patterning flexible single-walled carbon nanotube thin films by an ozone gas exposure method. Carbon 2013, 53, 4–10.

    Article  CAS  Google Scholar 

  20. Gao, W.; Alemany, L. B.; Ci, L. J.; Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009, 1, 403–408.

    Article  CAS  Google Scholar 

  21. Hossain, M. Z.; Johns, J. E.; Bevan, K. H.; Karmel, H. J.; Liang, Y. T.; Yoshimoto, S.; Mukai, K.; Koitaya, T.; Yoshinobu, J.; Kawai, M. et al. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat. Chem. 2012, 4, 305–309.

    Article  CAS  Google Scholar 

  22. Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

    Article  CAS  Google Scholar 

  23. Zhan, D.; Ni, Z. H.; Chen, W.; Sun, L.; Luo, Z. Q.; Lai, L. F.; Yu, T.; Wee, A. T. S.; Shen, Z. X. Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 2011, 49, 1362–1366.

    Article  CAS  Google Scholar 

  24. Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.

    Article  CAS  Google Scholar 

  25. Pei, S. F.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.

    Article  CAS  Google Scholar 

  26. Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

    Article  CAS  Google Scholar 

  27. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  CAS  Google Scholar 

  28. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  CAS  Google Scholar 

  29. Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.

    Article  CAS  Google Scholar 

  30. Jeong, H. K.; Lee, Y. P.; Jin, M. H.; Kim, E. S.; Bae, J. J.; Lee, Y. H. Thermal stability of graphite oxide. Chem. Phys. Lett. 2009, 470, 255–258.

    Article  CAS  Google Scholar 

  31. Strong, V.; Dubin, S.; EI-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395–1403.

    Article  CAS  Google Scholar 

  32. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

    Article  Google Scholar 

  33. Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587.

    Article  CAS  Google Scholar 

  34. Boukhvalov, D. W.; Katsnelson, M. I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701.

    Article  CAS  Google Scholar 

  35. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019.

    Article  CAS  Google Scholar 

  36. Jeong, H. K.; Yang, C.; Kim, B. S.; Kim, K. J. Valence band of graphite oxide. EPL 2010, 92, 37005.

    Article  Google Scholar 

  37. Hsu, S. L.; Signorelli, A. J.; Pez, G. P.; Baughman, R. H. Highly conducting iodine derivatives of polyacetylene: Raman, XPS and X-ray diffraction studies. J. Chem. Phys. 1978, 69, 106–111.

    Article  CAS  Google Scholar 

  38. Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992.

    Article  CAS  Google Scholar 

  39. Yu, W. J.; Lee, S. Y.; Chae, S. H.; Perello, D.; Han, G. H.; Yun, M.; Lee, Y. H. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett. 2011, 11, 1344–1350.

    Article  CAS  Google Scholar 

  40. Okimoto, H.; Takenobu, T.; Yanagi, K.; Miyata, Y.; Shimotani, H.; Kataura, H.; Iwasa, Y. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv. Mater. 2010, 22, 3981–3986.

    Article  CAS  Google Scholar 

  41. Nobusa, Y.; Yomogida, Y.; Matsuzaki, S.; Yanagi, K.; Kataura, H.; Takenobu, T. Inkjet printing of single-walled carbon nanotube thin-film transistors patterned by surface modification. Appl. Phys. Lett. 2011, 99, 183106.

    Article  Google Scholar 

  42. Takenobu, T.; Miura, N.; Lu, S. Y.; Okimoto, H.; Asano, T.; Shiraishi, M.; Iwasa, Y. Ink-jet printing of carbon nanotube thin-film transistors on flexible plastic substrates. Appl. Phys. Express 2009, 2. 025005.

    Article  Google Scholar 

  43. Wöbkenberg, P. H.; Eda, G.; Leem, D. S.; de Mello, J. C.; Bradley, D. D. C.; Chhowalla, M.; Anthopoulos, T. D. Reduced graphene oxide electrodes for large area organic electronics. Adv. Mater. 2011, 23, 1558–1562.

    Article  Google Scholar 

  44. Pang, S. P.; Tsao, H. N.; Feng, X. L.; Müllen, K. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv. Mater. 2009, 21, 3488–3491.

    Article  CAS  Google Scholar 

  45. Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S. S.; Liu, B. L.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 2011, 133, 5232–5235.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Cheng.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Du, J., Sun, D. et al. Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Res. 6, 842–852 (2013). https://doi.org/10.1007/s12274-013-0362-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0362-2

Keywords

Navigation