Skip to main content
Log in

Enhanced-fluorescence of europium–copper nanoclusters for cell imaging

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, a facile way to synthesize Cu nanoclusters (CuNCs) has been proposed while insulin played the role as a stabilizer. Specifically, this type of CuNCs existed in tunable diameters of 4–5 nm, and exhibited bright reddish-orange fluorescence with a quantum yield of 7.4 %. Interestingly, the fluorescence intensity of CuNCs could be obviously enhanced and more stable by introducing Eu3+. Moreover, this proposed Eu3+@CuNCs with low toxicity and near-infrared fluorescence may provide potential to broaden avenues for various applications in bioimaging and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lu YZ, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41:3594–3623

    Article  Google Scholar 

  2. Gonzalez BS, Rodriguez MJ, Blanco C, Rivas J et al (2010) One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett 10:4217–4221

    Article  Google Scholar 

  3. Ingram RS, Hostetler MJ, Murray RW et al (1997) 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM Coulomb staircases. J Am Chem Soc 119:9279–9280

    Article  Google Scholar 

  4. Chen W, Chen SW (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed 48:4386–4389

    Article  Google Scholar 

  5. Patel SA, Richards CI, Hsiang JC et al (2008) Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J Am Chem Soc 130:11602–11603

    Article  Google Scholar 

  6. Yeh HC, Sharma J, Han JJ et al (2010) A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106–3110

    Article  Google Scholar 

  7. Guo SJ, Wang EK (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264

    Article  Google Scholar 

  8. Huang X, Luo Y, Li Z, Li BY et al (2011) Biolabeling hematopoietic system cells using near-infrared fluorescent gold nanoclusters. J Phys Chem C 115:16753–16763

    Article  Google Scholar 

  9. Vilar-Vidal N, Rivas J, Lopez-Quintela MA (2012) Size dependent catalytic activity of reusable subnanometer copper(0) clusters. Acs Catal 2:1693–1697

    Article  Google Scholar 

  10. Lu YZ, Wei WT, Chen W (2012) Copper nanoclusters: synthesis, characterization and properties. Chin Sci Bull 57:41–47

    Article  Google Scholar 

  11. Murray RW, Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108(7):2688–2720

    Article  Google Scholar 

  12. Vilar-Vidal N, Blanco MC, Lopez-Quintela MA, Rivas J, Serra C (2010) Electrochemical synthesis of very stable photoluminescent copper clusters. J Phys Chem C 114:15924–15930

    Article  Google Scholar 

  13. Bradwell DJ, Osswald S, Wei WF, Barriga SA, Ceder G, Sadoway DR (2011) Recycling ZnTe, CdTe, and other compound semiconductors by ambipolar electrolysis. J Am Chem Soc 133:19971–19975

    Article  Google Scholar 

  14. de la Monte SM, Wands JR (2005) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    Google Scholar 

  15. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  Google Scholar 

  16. Liu CL, Wu HT, Hsiao YH et al (2011) Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew Chem Int Ed 50:7056–7060

    Article  Google Scholar 

  17. Balogh L, Tomalia DA (1998) Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc 120:7355–7356

    Article  Google Scholar 

  18. Cheng Y, Shen Z, Zhang Q, Li R, Wei S (2000) Lanthanides’ enhancing absorption of insulin and reduction of blood glucose of rat by pulmonary administration. Chin Sci Bull 45(7):604–608

    Article  Google Scholar 

  19. Li JS, Zhou WY, Ouyang XY, Yu H et al (2011) Design of a room-temperature phosphorescence-based molecular beacon for highly sensitive detection of nucleic acids in biological fluids. Anal Chem 83(4):1356–1362

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by Fundamental Research Funds for the Central Universities (XDJK2015A005, XDJK2016D033) and Innovative Research Project for Postgraduate Students of Chongqing (CYS14049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Yang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Feng, Y., Zhong, D. et al. Enhanced-fluorescence of europium–copper nanoclusters for cell imaging. J Mater Sci 51, 7229–7235 (2016). https://doi.org/10.1007/s10853-016-0006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0006-5

Keywords

Navigation