Skip to main content
Log in

Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrathin graphitic carbon nitride nanoplatelets (UGCNPs) are synthesized by a facile manner via an efficient and eco-friendly ball milling approach. The obtained UGCNPs are 2–6 nm in size and 0.35–0.7 nm in thickness, with improved specific surface area over that of bulk graphitic carbon nitride. Photochemical experiments show that the UGCNPs are highly active in visible-light water splitting, with a hydrogen evolution rate of 1,365 μmol·h−1·g−1, which is 13.7-fold greater than that of their bulk counterparts. The notable improvement in the hydrogen evolution rate observed with UGCNPs under visible light is due to the synergistic effects derived from the increased specific surface area, reduced thickness, and a negative shift in the conduction band concomitant with the exfoliation of bulk graphitic carbon nitride into UGCNPs. In addition to metal-free visible-light-driven photocatalytic hydrogen production, the UGCNPs find attractive applications in biomedical imaging and optoelectronics because of their superior luminescence characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, Y. I.; Salim, S.; Huq, M. J.; Mallouk, T. E. Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J. Am. Chem. Soc. 1991, 113, 9561–9563.

    Article  Google Scholar 

  2. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  3. Grätzel, M. Photoelectrochemical cells. Nature. 2001, 414, 338–344.

    Article  Google Scholar 

  4. Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Ioune, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature. 2006, 440, 295.

    Article  Google Scholar 

  5. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010, 110, 6503–6570.

    Article  Google Scholar 

  6. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science. 2004, 306, 666–669.

    Article  Google Scholar 

  7. Janowska, I.; Chizari, K.; Ersen, O.; Zafeiratos, S.; Soubane, D.; Costa, V. D.; Speisser, V.; Boeglin, C.; Houllé, M.; Bégin, D.; et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano. Res. 2010, 3, 126–137.

    Article  Google Scholar 

  8. Zhou, H. Q.; Zhu, J. X.; Liu, Z.; Yan, Z.; Fan, X. J.; Lin, J.; Wang, G.; Yan, Q. Y.; Yu, T.; Ajayan, P.; et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano. Res. 2014, 7, 1232–1240.

    Article  Google Scholar 

  9. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identigication of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007, 317, 100–102.

    Article  Google Scholar 

  10. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011, 331, 568–571.

    Article  Google Scholar 

  11. Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng. Y.; Zhang, H. L. A mixed-solvent strategyfor efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 2011, 50, 10839–10842.

    Article  Google Scholar 

  12. Zhou, M.; Lou, X. W. (David); Xie, Y. Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today. 2013, 8, 598–618.

    Article  Google Scholar 

  13. Wang, W. W.; Zhu, Y. J.; Yang, L. X. ZnO-SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties Adv. Funct. Mater. 2007, 17, 59–64.

    Article  Google Scholar 

  14. Xu, T. G.; Zhang, C.; Shao, X.; Wu, K.; Zhu, Y. F. Monomolecular-layer Ba5Ta4O15 nanosheets: Synthesis and investigation of photocatalytic properties. Adv. Funct. Mater. 2006, 16, 1599–1607.

    Article  Google Scholar 

  15. Kim, J. Y.; Hiramatsu, H.; Osterloh, F. E. Planar polarized light emission from CdSe nanoparticle clusters. J. Am. Chem. Soc. 2005, 127, 15556–15561.

    Article  Google Scholar 

  16. Kim, J. Y.; Osterloh, F. E. Planar gold nanoparticle clusters as microscale mirrors. J. Am. Chem. Soc. 2006, 128, 3868–3869.

    Article  Google Scholar 

  17. Zhang, C.; Zhu, Y. F. Synthesis of square Bi2WO6nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 2005, 17, 3537–3545.

    Article  Google Scholar 

  18. Lu, H. B.; Wang, S. M.; Zhao, L.; Li, J. C.; Dong, B. H.; Xu, Z. X. Hierarchical ZnO microarchitectures assembled by ultrathin nanosheets: hydrothermal synthesis and enhanced photocatalytic activity. J. Mater. Chem. 2011, 21, 4228–4234.

    Article  Google Scholar 

  19. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for biomaging. J. Am. Chem. Soc. 2013, 135, 18–21.

    Article  Google Scholar 

  20. Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L. N.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.

    Article  Google Scholar 

  21. Liu, G.; Wang, L. Z.; Sun, C. H.; Chen, Z. G.; Yan, X. X.; Cheng, L. N.; Cheng, H. M.; Lu, G. Q. Nitrogen-doped titania nanosheets towards visible light response. Chem. Comm. 2009, 1383–1385.

    Google Scholar 

  22. Qi, L. M.; Colfen, H.; Antonietti, M. Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers. Nano. Lett. 2001, 1, 61–65.

    Article  Google Scholar 

  23. Reber, J. F.; Rusek, M. Photochemical Hydrogen-Production with Platinized Suspensions of Cadmium-Sulfide and Cadmium Zinc-Sulfide Modified by Silver Sulfide. J. Phys. Chem. 1986, 90, 824–824.

    Article  Google Scholar 

  24. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80.

    Article  Google Scholar 

  25. Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporousgraphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680–1681.

    Article  Google Scholar 

  26. Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Edit. 2012, 51, 68–89.

    Article  Google Scholar 

  27. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalyticactivities. Adv. Funct. Mater. 2012, 22, 4763–4770.

    Article  Google Scholar 

  28. Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

    Article  Google Scholar 

  29. Chang, D. W.; Lee, E. K.; Park, E. Y.; Yu, H.; Choi, H. J.; Jeon, I. Y.; Sohn, G. J.; Shin, D.; Park, N.; Oh, J. H.; Dai, L. M.; Baek, J. B. Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. J. Am. Chem. Soc. 2013, 135, 8981–8988.

    Article  Google Scholar 

  30. Chang, D. W.; Choi, H. J.; Jeon, I. Y.; Baek, J. B. Edge-selectively functionalized graphene nanoplatelets. Chem. Rec. 2013, 13, 224–238.

    Article  Google Scholar 

  31. Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.

    Article  Google Scholar 

  32. Jeon, I. Y.; Zhang, S.; Zhang, L. P.; Choi, H. J.; Seo, J. M.; Xia, Z. H.; Dai, L. M.; Baek, J. B. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv. Mater. 2013, 25, 6138–6145.

    Article  Google Scholar 

  33. Lotsch, B. V.; Döblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.; Schnick, W. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chem. Eur. J. 2007, 13, 4969–4980.

    Article  Google Scholar 

  34. Jun, Y. S.; Hong, W. H.; Antonietti, M.; Thomas, A. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 2009, 21, 4270–4274.

    Article  Google Scholar 

  35. Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792.

    Article  Google Scholar 

  36. Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Edit. 2014, 53, 9240–9245.

    Article  Google Scholar 

  37. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J. O.; Schlögl, R.; Carlsson, J. M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908.

    Article  Google Scholar 

  38. Li, J.; Shen, B.; Hong, Z.; Lin, B.; Gao, B.; Chen, Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible light photoreactivity. Chem. Commun. 2012, 48, 12017–12019.

    Article  Google Scholar 

  39. Cui, Y. J.; Ding, Z. X; Fu, X. Z; Wang, X. C. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. Angew. Chem. Int. Ed. 2012, 51, 11814–11818.

    Article  Google Scholar 

  40. Peng, Q.; Park, K; Lin, T.; Durstock, M.; Dai, L. Donor-π-acceptor conjugated copolymers for photovoltaic applications: Tuning the open-circuit voltage by adjusting the donor/acceptor ratio. J. Phys. Chem. B. 2008, 112, 2801–2808.

    Article  Google Scholar 

  41. Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. S. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297–3303.

    Article  Google Scholar 

  42. Zhang, J. S.; Chen, X. F.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Edit. 2010, 49, 441–444.

    Article  Google Scholar 

  43. Zhang, G. G.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091.

    Article  Google Scholar 

  44. Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.

    Article  Google Scholar 

  45. Zhang, G. G.; Zhang, M. W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 2014, 26, 805–809.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipan Zhang or Liangti Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Zhao, F., Hu, C. et al. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 8, 1718–1728 (2015). https://doi.org/10.1007/s12274-014-0675-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0675-9

Keywords

Navigation