Skip to main content
Log in

Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arias JL (2011) Drug targeting strategies in cancer treatment: an overview. Mini Rev Med Chem 11:1–17

    Article  CAS  PubMed  Google Scholar 

  • Arranja AG, Pathak V, Lammers T, Shi Y (2017) Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 115:87–95

    Article  CAS  PubMed  Google Scholar 

  • Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Article  Google Scholar 

  • Baghbani F, Moztarzadeh F (2017) Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces. 153:132–140

    Article  CAS  PubMed  Google Scholar 

  • Baghbani F, Chegeni M, Moztarzadeh F, Mohandesi JA, Mokhtari-Dizaji M (2017) Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: in vitro and in vivo evaluation. Mater Sci Eng C Mater Biol Appl 77:698–707

    Article  CAS  PubMed  Google Scholar 

  • Bashyal S, Noh G, Keum T, Choi YW, Lee S (2016) Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. J Pharm Investig 46:205–220

    Article  CAS  Google Scholar 

  • Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. https://doi.org/10.1039/C6CS00636A

    PubMed  Google Scholar 

  • Bernardos A, Aznar E, Marcos MD, Manez RM, Sancenon F, Soto J, Barat JM, Amoros P (2009) Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angew Chem Int Ed 48:5998–6001

    Article  Google Scholar 

  • Bernardos A, Mondragon L, Aznar E, Marcos MD, Manez RM, Sancenon F, Soto J, Barat JM, Paya EP, Guillem C, Amoros P (2010) Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4:6353–6368

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Torchilin VP (2014) Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev 66:26–41

    Article  CAS  PubMed  Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137:2140–2154

    Article  CAS  PubMed  Google Scholar 

  • Broaders KE, Grandhe S, Frechet JMJ (2010) A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc 133:756–758

    Article  CAS  Google Scholar 

  • Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA (2017) Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm 113:211–228

    Article  CAS  PubMed  Google Scholar 

  • Cern A, Marcus D, Tropsha A, Barenholz Y, Goldblum A (2017) New drug candidates for liposomal delivery identified by computer modeling of liposomes’ remote loading and leakage. J Control Release 252:18–27

    Article  CAS  PubMed  Google Scholar 

  • Chen GH, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X (2013) Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials 34:1364–1371

    Article  CAS  PubMed  Google Scholar 

  • Chen M, He X, Wang K, He D, Yang S, Qiu P, Chen S (2014) A pH-responsive polymer/mesoporous silica nano-container linked through an acid cleavable linker for intracellular controlled release and tumor therapy in vivo. J. Mater. Chem. B 2:428–436

    Article  CAS  Google Scholar 

  • Cheng R, Feng F, Meng FH, Deng C, Feijen J, Zhong ZY (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12

    Article  CAS  PubMed  Google Scholar 

  • Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Yoon HY, Kim JH, Bae SM, Park RW, Kang YM, Kim IS, Kwon IS, Choi K, Jeong SY, Kim K, Park JH (2011) Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 5:8591–8599

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Thapa RK, Yong CS, Kim JO (2016a) Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. J Pharm Investig 46:325–339

    Article  CAS  Google Scholar 

  • Choi JY, Ramasamy T, Kim SY, Kim J, Ku SK, Youn YS, Kim JR, Jeong JH, Choi HG, Yong CS, Kim JO (2016b) PEGylated lipid bilayer-supported mesoporous silica nanoparticle composite for synergistic co-delivery of axitinib and celastrol in multi-targeted cancer therapy. Acta Biomater 39:94–105

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Lee YJ, Kim D (2017) Image-guided nanomedicine for cancer. J Pharm Investig 47:51–64

    Article  CAS  Google Scholar 

  • Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    Article  CAS  PubMed  Google Scholar 

  • Dash RN, Mohammed H, Humaira T (2016) Design, optimization, and evaluation of ezetimibe solid supersaturatable self-nanoemulsifying drug delivery for enhanced solubility and dissolution. J Pharm Investig 46:153–168

    Article  CAS  Google Scholar 

  • Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  CAS  PubMed  Google Scholar 

  • de Gracia Lux C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E, Fomina N, Almutairi A (2012) Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J Am Chem Soc 134:15758–15764

    Article  CAS  Google Scholar 

  • de la Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Delivery Rev 64:967–978

    Article  CAS  Google Scholar 

  • Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK (2011) Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 32:4976–4986

    Article  CAS  PubMed  Google Scholar 

  • Diebold L, Chandel NS (2016) Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med 100:86–93

    Article  CAS  PubMed  Google Scholar 

  • Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31:3694–3706

    Article  CAS  PubMed  Google Scholar 

  • Domenici F, Giliberti C, Bedini A, Palomba R, Luongo F, Sennato S, Olmati C, Pozzi D, Morrone S, Congju Castellano A, Bordi F (2013) Ultrasound well below the intensity threshold of cavitation can promote efficient uptake of small drug model molecules in fibroblast cells. Drug Deliv 20:285–295

    Article  CAS  PubMed  Google Scholar 

  • Doncom KEB, Hansell CF, Theato P, O’Reilly RK (2012) pH-switchable polymer nanostructures for controlled release. Polym Chem 3:3007–3015

    Article  CAS  Google Scholar 

  • Du J, Armes SP (2005) pH-responsive vesicles based on a hydrolytically self-cross-linkable copolymer. J Am Chem Soc 127:12800–12801

    Article  CAS  PubMed  Google Scholar 

  • Eisenbrey JR, Soulen MC, Wheatley MA (2010) Delivery of encapsulated doxorubicin by ultrasound-mediated size reduction of drug-loaded polymer contrast agents. IEEE Trans Biomed Eng 57:24–28

    Article  CAS  PubMed  Google Scholar 

  • Evjen TJ, Nilssen EA, Rognvaldsson S, Brandl M, Fossheim SL (2010) Distearoylphosphatidylethanolamine-based liposomes for ultrasound-mediated drug delivery. Eur J Pharm Biopharm 75:327–333

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Delivery Rev 63:136–151

    Article  CAS  Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Delivery Rev 64:866–884

    Article  CAS  Google Scholar 

  • Gao GH, Park MJ, Li Y, Im GH, Kim JH, Kim HN, Lee JW, Jeon P, Bang OY, Lee JH, Lee DS (2012) The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials 33:9157–9164

    Article  CAS  PubMed  Google Scholar 

  • Garripelli VK, Kim JK, Son S, Kim WJ, Repka MA, Jo S (2011) Matrix metalloproteinase-sensitive thermogelling polymer for bioresponsive local drug delivery. Acta Biomater 7:1984–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, Charasson V, Loock B, Morère A, Maillard P, Garcia M, Durand JO (2012) Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 423:509–515

    Article  CAS  PubMed  Google Scholar 

  • Guo DD, Hong SH, Jiang HL, Kim JH, Minai-Tehrani A, Kim JE, Shin JY, Jiang T, Kim YK, Choi YJ, Cho CS, Cho MH (2012) Synergistic effects of Akt1 shRNA and paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel on breast cancer. Biomaterials 33:2272–2281

    Article  CAS  PubMed  Google Scholar 

  • Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26:57–64

    Article  CAS  PubMed  Google Scholar 

  • Harnoy AJ, Rosenbaum I, Tirosh E, Ebenstein Y, Shaharabani R, Beck R, Amir RJ (2014) Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers. J Am Chem Soc 136:7531–7534

    Article  CAS  PubMed  Google Scholar 

  • Hasanzadeh H, Mokhtari-Dizaji M, Bathaie SZ, Hassan ZM (2011) Sonication on drug distribution from polymeric nanomicelles. Ultrason Sonochem 18:1165–1171

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama H, Akita H, Ito E, Hayashi Y, Oishi M, Nagasaki Y, Danev R, Nagayama K, Kaji N, Kikuchi H, Baba Y (2011) Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32:4306–4316

    Article  CAS  PubMed  Google Scholar 

  • Heller J, Baker RW, Gale RM, Rodin JO (1978) Controlled drug release by polymer dissolution. I. Partial esters of maleic anhydride copolymers—properties and theory. J Appl Polym Sci 22:1991–2009

    Article  CAS  Google Scholar 

  • Hoang NH, Lim CM, Sim TH, Oh KT (2017) Triblock copolymers for nano-sized drug delivery systems. J Pharm Investig 47:27–35

    Article  CAS  Google Scholar 

  • Hu Q, Katti PS, Gu Z (2014) Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6:12273–12286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua Y, Darcosa V, Mongeb S, Lia S (2015) Thermo-responsive drug release from self-assembled micelles of brush-like PLA/PEG analogues block copolymers Int. J. Pharm 491:152–161

    Google Scholar 

  • Huo M, Liu Y, Wang L, Yin T, Qin C, Xiao Y, Yin L, Liu J, Zhou J (2016) Redox-Sensitive Micelles Based on O, N-Hydroxyethyl Chitosan-Octylamine Conjugates for Triggered Intracellular Delivery of Paclitaxel. Mol Pharm 13:1750–1762

    Article  CAS  PubMed  Google Scholar 

  • Jang SH, Wientjes MG, Lu D, Au JLS (2003) Drug delivery and transport to solid tumors. Pharm Res 20:1337–1350

    Article  CAS  PubMed  Google Scholar 

  • Jeong B, Kim SW, Bae YH (2002a) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54:37–51

    Article  CAS  PubMed  Google Scholar 

  • Jeong B, Lee KM, Gutowska A, An YHH (2002b) Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules 3:865–868

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Mo R, Bellotti A, Zhou J, Gu Z (2014) Gel–liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv Funct Mater 24:2295–2304

    Article  CAS  Google Scholar 

  • Jiang W, Von Roemeling CA, Chen Y, Qie Y, Liu X, Chen J, Kim YS (2017) Designing nanomedicine for immuno-oncology. Nat Biomed Eng. https://doi.org/10.1038/s41551-017-0029

    Google Scholar 

  • Jin HJ, Lu J, Wu X (2012) Development of a new enzyme-responsive self-immolative spacer conjugate applicable to the controlled drug release. Bioorg Med Chem 20:3465–3469

    Article  CAS  PubMed  Google Scholar 

  • Jones A, Harris AL (1998) New developments in angiogenesis: a major mechanism for tumor growth and target for therapy. Cancer J Sci Am 4:209–221

    CAS  PubMed  Google Scholar 

  • Kakizawa Y, Harada A, Kataoka K (1999) Environment-sensitive stabilization of core–shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J Am Chem Soc 121:11247–11248

    Article  CAS  Google Scholar 

  • Kang HC, Bae YH (2011) Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulphonamide. Biomaterials 32:4914–4924

    Article  CAS  PubMed Central  Google Scholar 

  • Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke W, Li J, Zhao K, Zha Z, Han Y, Wang Y, Yin W, Zhang P, Ge Z (2016) Modular design and facile synthesis of enzyme-responsive peptide-linked block copolymers for efficient delivery of doxorubicin. Biomacromolecules 17:3268–3276

    Article  CAS  PubMed  Google Scholar 

  • Kim JS (2016) Liposomal drug delivery system. J Pharm Investig 46:387–392

    Article  CAS  Google Scholar 

  • Kim HS, Lee DY (2017) Photothermal therapy with gold nanoparticles as an anticancer medication. J Pharm Investig 47:19–26

    Article  CAS  Google Scholar 

  • Kim IY, Kang YS, Lee DS, Park HJ, Choi EK, Oh YK, Son HJ, Kim JS (2009) Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Release 140:55–60

    Article  CAS  PubMed  Google Scholar 

  • Kim JO, Sahay G, Kabanov AV, Bronich TK (2010) Polymeric micelles with ionic cores containing biodegradable crosslinks for delivery of chemotherapeutic agents. Biomacromolecules 11:919–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DW, Ramasamy T, Choi JY, Kim JH, Yong CS, Choi HG, Kim JO (2014) The influence of bile salt on the chemotherapeutic response of decetaxel-loaded thermosensitive nanomicelles. Int J Nanomedicine 9:3815–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Park EJ, Na DH (2016) Antibody-drug conjugates for targeted anticancer drug delivery. J Pharm Investig 46:341–349

    Article  CAS  Google Scholar 

  • Kim CH, Kim CH, Lee SG, Kang MJ, Lee SK, Choi YW (2017a) Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J Pharm Investig 47:203–227

    Article  CAS  Google Scholar 

  • Kim H, Lee J, Oh C, Park JH (2017b) Cooperative tumor cell membrane targeted phototherapy. Nat Commun. 8:15880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, Park JH, Lee SC (2008) Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun (Camb) 48:6570–6572

    Article  CAS  Google Scholar 

  • Kuppusamy P, Li H, Ilangovan G, Cardounel AJ, Zweier JL, Yamada K, Krishna MC, Mitchell JB (2002) Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res 62:307–312

    CAS  PubMed  Google Scholar 

  • Landon CD, Park JY, Needham D, Dewhirst MW (2011) Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J 3:38–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee ES, Youn YS (2016) Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J Pharm Investig 46:305–315

    Article  CAS  Google Scholar 

  • Lee Y, Fukushima S, Bae Y, Hiki S, Ishii T, Kataoka K (2007) A Protein nanocarrier from charge-conversion polymer in response to endosomal pH. J Am Chem Soc 129:5362–5363

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Choi SH, Kim SH, Park TG (2008) Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J Control Release 125:25–32

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Du JZ, Sun TM, Song WJ, Wu J (2010) A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew Chem Int Ed 49:3621–3626

    Article  CAS  Google Scholar 

  • Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7:2078–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Wang J, Xie C, Wagner E, Lu W, Li Y, Wei X, Dong J, Liu M (2013) Glutathione-sensitive RGD-poly(ethylene glycol)-SS-polyethylenimine for intracranial glioblastoma targeted gene delivery. J Gene Med 15:291–305

    CAS  PubMed  Google Scholar 

  • Li YL, Zhu L, Liu Z, Cheng R, Meng F, Cui JH, Ji SJ, Zhong Z (2009) Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew Chem Int Edit 48:9914–9918

    Article  CAS  Google Scholar 

  • Li Y, Gao GH, Lee DS (2013a) Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv Healthc Mater 2:388–417

    Article  CAS  PubMed  Google Scholar 

  • Li G, Meng Y, Guo L, Zhang T, Liu J (2013b) Formation of thermo-sensitive polyelectrolyte complex micelles from two biocompatible graft copolymers for drug delivery. J Biomed Mater Res A. 102:2163–2172

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhi X, Lin J, You X, Yuan J (2017) Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Mater Sci Eng, C 73:189–197

    Article  CAS  Google Scholar 

  • Liu ZH, Jiao YP, Wang YF, Zhou CR, Zhang ZY (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  CAS  PubMed  Google Scholar 

  • Liu YC, Le Ny ALM, Schmidt J, Talmon Y, Chmelka BF, Lee CT (2009) Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir 25:5713–5724

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Li D, He B, Xu X, Sheng M, Lai Y, Wang G, Gu Z (2011) Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(l-histidine-)-poly(L-lactide) nanoparticles. J Control Release 152:49–56

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang J, Sun W, Xie QR, Xia W, Gu H (2012) Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells. Int J Nanomed 7:999–1013

    CAS  Google Scholar 

  • Liu F, Lin S, Zhang Z, Hu J, Liu G, Tu Y, Yang Y, Zou H, Mo Y, Miao L (2014) pH-responsive nanoemulsions for controlled drug release. Biomacromolecules 15:968–977

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang C, Wang X, Wang X, Cheng L, Li Y, Liu Z (2015) Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv Funct Mater 25:384–392

    Article  CAS  Google Scholar 

  • Lu J, Choi E, Tamanoi F, Zink JI (2008) Light-activated nano impeller controlled drug release in cancer cells. Small 4:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynn DM, Amiji MM, Langer R (2001) pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH. Angew Chem Int Ed 40:1707–1710

    Article  CAS  Google Scholar 

  • Ma N, Li Y, Xu H, Wang Z, Zhang X (2010) Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 132:442–443

    Article  CAS  PubMed  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, advances in enzyme regulation. Elsevier, Oxford, pp 189–207

    Google Scholar 

  • Maeda Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    Article  CAS  PubMed  Google Scholar 

  • Mas N, Agostini A, Mondragón L, Bernardos A, Sancenón F, Marcos MD, Martínez-Máñez R, Costero AM, Gil S, Merino-Sanjuán M, Amorós P, Orzáez M, Pérez-Payá E (2013) Enzyme-responsive silica mesoporous supports capped with azopyridinium salts for controlled delivery applications. Chemistry 19:1346–1356

    Article  CAS  PubMed  Google Scholar 

  • Min KH, Kim JH, Bae SM, Shin H, Kim MS, Park S, Lee H, Park RW, Kim IS, Kim K, Kwon IC (2010) Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 144:259–266

    Article  CAS  PubMed  Google Scholar 

  • Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, Ping Q (2012) Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv Mater 24:3659–3665

    Article  CAS  PubMed  Google Scholar 

  • Mohan P, Rapoport N (2010) Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasoundmediated intracellular delivery and nuclear trafficking. Mol Pharm 7:1959–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondragón L, Mas N, Ferragud V, de la Torre C, Agostini A, Martínez-Máñez R, Sancenón F, Amorós P, Pérez-Payá E, Orzáez M (2014) Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with ε-poly-L-lysine. Chemistry 20:5271–5281

    Article  PubMed  CAS  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Nam K, Nam HY, Kim PH, Kim SW (2012) Paclitaxel-conjugated PEG and argininegrafted bioreducible poly (disulfide amine) micelles for co-delivery of drug and gene. Biomaterials 33:8122–8130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HT, Tran TH, Thapa RK, Pham TT, Jeong JH, Youn YS, Choi HG, Yong CS, Kim JO (2017) Incorporation of chemotherapeutic agent and photosensitizer in a low temperature-sensitive liposome for effective chemo-hyperthermic anticancer activity. Expert Opin Drug Deliv 14:155–164

    Article  CAS  PubMed  Google Scholar 

  • Nie J, Wang Y, Wang W (2016) In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy. Int J Pharm 509:168–177

    Article  CAS  PubMed  Google Scholar 

  • Oh Y, Moorthy MS, Manivasagan P, Bharathiraja S, Oh J (2017) Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles. Biochimie 133:7–19

    Article  CAS  PubMed  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Liu J, Su Y, Wu J, Zhu L, Zhu X, Yan D, Zhu B (2011) Design and synthesis of thermo-responsive hyperbranched poly(amine-ester)s as acid-sensitive drug carriers. Polym Chem 2:1661–1670

    Article  CAS  Google Scholar 

  • Paris JL, Cabañas MV, Manzano M, Vallet-Regí M (2015) Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano 9:11023–11033

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Bae KH, Kim C, Park TG (2010) Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. Biomacromolecules 12:457–465

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Kim MG, Shim G, Oh YK (2017a) Lipid-based antigen delivery systems. J Pharm Investig 46:295–304

    Article  CAS  Google Scholar 

  • Park OK, Yu G, Jung H, Mok H (2017b) Recent studies on micro-nano-sized biomaterials for cancer immunotherapy. J Pharm Investig 47:11–18

    Article  CAS  Google Scholar 

  • Perche F, Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 705265

  • Plassat V, Wilhelm C, Marsaud V, Gazeau F, Renoir JM, Lesieur S (2011) Anti-estrogen-loaded superparamagnetic liposomes for intracellular magnetic targeting and treatment of breast cancer tumors. Adv Funct Mater 21:83–92

    Article  CAS  Google Scholar 

  • Pompella A, Visvikis A, Paolicchi A, Tata VD, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503

    Article  CAS  PubMed  Google Scholar 

  • Pradhan R, Ramasamy T, Choi JY, Kim JH, Poudal BK, Tak JW, Nukolova N, Choi HG, Yong CS, Kim JO (2015) Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin. Carbohydr Polym 123:313–323

    Article  CAS  PubMed  Google Scholar 

  • Preiss MR, Bothun GD (2011) Stimuli–responsive liposome–nanoparticle assemblies”. Expert Opin Drug Deliv 8:1025–1040

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M (2009) Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv Mater 21:1354–1357

    Article  CAS  Google Scholar 

  • Qin SY, Zhang AQ, Cheng SX, Rong L, Zhang XZ (2017) Drug self-delivery systems for cancer therapy. Biomaterials 112:234–247

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy T, Kim JH, Choi JY, Tran TH, Choi HG, Yong CS, Kim JO (2014a) pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J Mater Chem B 2:6324–6333

    Article  CAS  Google Scholar 

  • Ramasamy T, Tran TH, Choi JY, Cho HJ, Kim JH, Yong CS, Choi HG, Kim JO (2014b) Layer-by-layer coated lipid–polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohyd Polym 102:653–661

    Article  CAS  Google Scholar 

  • Ramasamy T, Haidar ZS, Tran TH, Choi JY, Jeong JH, Shin BS, Choi HG, Yong CS, Kim JO (2014c) Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater 10:5116–5127

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy T, Choi JY, Cho HJ, Umadevi SK, Shin BS, Choi HG, Yong CS, Kim JO (2015a) Polypeptide-based micelles for delivery of irinotecan: physicochemical and in vivo characterization. Pharm Res 32:1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy T, Ruttala HB, Choi JY, Tran TH, Kim JH, Ku SK, Choi HG, Yong CS, Kim JO (2015b) Engineering of a lipid-polymer nanoarchitectural platform for highly effective combination therapy of doxorubicin and irinotecan. Chem Commun 51:5758–5761

    Article  CAS  Google Scholar 

  • Ramasamy T, Poudel BK, Ruttala HB, Choi JY, Hieu TD, Umadevi K, Youn YS, Choi HG, Yong CS, Kim JO (2016) Cationic drug-based self-assembled polyelectrolyte complex micelles: physicochemical, pharmacokinetic, and anticancer activity analysis. Colloids Surf, B 146:152–160

    Article  CAS  Google Scholar 

  • Ramasamy T, Ruttala HB, Chitrapriya N, Poudal BK, Choi JY, Kim ST, Youn YS, Ku SK, Choi HG, Yong CS, Kim JO (2017a) Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater 48:131–143

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO (2017b) Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J Control Release 258:226–253

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy T, Sundaramoorthy P, Ruttala HB, Choi Y, Shin WH, Jeong JH, Ku SK, Choi HG, Kim HM, Yong CS, Kim JO (2017c) Polyunsaturated fatty acid-based targeted nanotherapeutics to enhance the therapeutic efficacy of docetaxel. Drug Delivery 24:1262–1272

    Article  CAS  PubMed  Google Scholar 

  • Rejinold NS, Baby T, Chennazhi KP, Jayakumar R (2014) Dual drug encapsulated thermo-sensitive fibrinogen-graft-poly (N-isopropyl acrylamide) nanogels for breast cancer therapy. Colloids Surf. B: Biointerfaces 114:209–217

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 110–111:3–12

    Article  PubMed  CAS  Google Scholar 

  • Ruttala HB, Ko YT (2015a) Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. Pharm Res 32:1002–1016

    Article  CAS  PubMed  Google Scholar 

  • Ruttala HB, Ko YT (2015b) Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor efficacy. Colloids Surf B Biointerfaces. 128:419–426

    Article  CAS  PubMed  Google Scholar 

  • Ruttala HB, Ramasamy T, Shin BS, Choi HG, Yong CS, Kim JO (2017a) Layer-by-layer assembly of hierarchical nanoarchitectures to enhance the systemic performance of nanoparticle albumin-bound paclitaxel. Int J Pharm 519:11–21

    Article  CAS  PubMed  Google Scholar 

  • Ruttala HB, Ramasamy T, Poudal BK, Choi Y, Choi JY, Kim J, Ku SK, Choi HG, Yong CS, Kim JO (2017b) Molecularly targeted co-delivery of a histone deacetylase inhibitor and paclitaxel by lipid-protein hybrid nanoparticles for synergistic combinational chemotherapy. Oncotarget 8:14925–14940

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruttala HB, Ramasamy T, Gupta B, Choi HG, Yong CS, Kim JO (2017c) Multiple polysaccharide-drug complex-loaded liposomes: a unique strategy in drug loading and cancer targeting. Carbohydr Polym 173:57–66

    Article  CAS  PubMed  Google Scholar 

  • Ruttala HB, Chitrapriya N, Kaliraj K, Ramasamy T, Shin WH, Jeong JH, Kim JR, Ku SK, Choi HG, Yong CS, Kim JO (2017d) Facile construction of bioreducible crosslinked polypeptide micelles for enhanced cancer combination therapy. Acta Biomater. https://doi.org/10.1016/j.actbio.2017.09.002

    Google Scholar 

  • Ryu JH, Chacko RT, Jiwpanich S, Bickerton S, Babu RP, Thayumanavan S (2010) Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J Am Chem Soc 132:17227–17235

    Article  CAS  PubMed  Google Scholar 

  • Saito G, Swanson JA, Lee KD (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Delivery Rev 55:199–215

    Article  CAS  Google Scholar 

  • Samarajeewa S, Shrestha R, Elsabahy M, Karwa A, Li A, Zentay RP, Kostelc JG, Dorshow RB, Wooley KL (2013) In Vitro efficacy of paclitaxel-loaded dual-responsive shell cross-linked polymer nanoparticles having orthogonally degradable disulfide cross-linked corona and polyester core domains. Mol Pharm 10:1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Sarisozen C, Pan J, Dutta I, Torchilin VP (2017) Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors. J Pharm Investig 47:37–49

    Article  CAS  Google Scholar 

  • Sawant RR, Sriraman SK, Navarro G, Biswas S, Dalvi RA, Torchilin VP (2012) Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery. Biomaterials 33:3942–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim MS, Xia Y (2013) A reactive oxygen species (ros)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int Ed 52:6926–6929

    Article  CAS  Google Scholar 

  • Shim T, Lim C, Hoang NH, Joo H, Lee JW, Kim DW, Lee ES, Youn YS, Kim JO, Oh KT (2016) Nanomedicines for oral administration based on diverse nanoplatform. J Pharm Investig 46:351–362

    Article  CAS  Google Scholar 

  • Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2011) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl Mater Interfaces 3:842–856

    Article  CAS  PubMed  Google Scholar 

  • Slemming-Adamsen P, Song J, Dong M, Besenbacher F, Chen M (2015) In situ cross-linked pnipam/gelatin nanofibers for thermo-responsive drug release. Macromol Mater Eng 300:1226–1231

    Article  CAS  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Delivery Rev 60:1278–1288

    Article  CAS  Google Scholar 

  • Song X, Wen Y, Zhu JL, Zhao F, Zhang Z, Li J (2016) Thermoresponsive delivery of paclitaxel by cyclodextrin-based poly(n-isopropylacrylamide) star polymer via inclusion complexation. Biomacromolecules 17:3957–3963

    Article  CAS  PubMed  Google Scholar 

  • Stacker SA, William SP, Karnezis T, Shyan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14:159–172

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Chen X, Lu T, Liu S, Tian H, Guo Z, Jing X (2008) Formation of reversible shell cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly(l-cysteine)-block-poly(L-lactide). Langmuir 24:10099–10106

    Article  CAS  PubMed  Google Scholar 

  • Sundaramoorthy P, Ramasamy T, Mishra SK, Jeong KY, Yong CS, Kim JO, Kim HM (2016) Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Acta Biomater 42:220–231

    Article  CAS  PubMed  Google Scholar 

  • Tachibana K, Uchida T, Tamura K, Eguchi H, Yamashita N, Ogawa K (2000) Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells. Cancer Lett 149:189–194

    Article  CAS  PubMed  Google Scholar 

  • Teo JY, Chin W, Ke X, Gao S, Liu S, Cheng W, Hedrick JL, Yang YY (2017) pH and redox dual-responsive biodegradable polymeric micelles with high drug loading for effective anticancer drug delivery. Nanomedicine 13:431–442

    Article  CAS  PubMed  Google Scholar 

  • Tong R, Hemmati HD, Langer R, Kohane DS (2012) Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 134:8848–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TH, Bae BC, Lee YK, Na K, Huh KM (2013) Heparin–folate–retinoic acid bioconjugates for targeted delivery of hydrophobic photosensitizers. Carbohydr Polym 92:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Tran TH, Ramasamy T, Choi JY, Nguyen HT, Pham TT, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO (2015) Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells. Int J Nanomedicine 10:5249–5262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TH, Thapa RK, Nguyen HT, Pham TT, Ramasamy T, Kim DS, Yong CS, Kim JO, Choi HG (2016) Combined phototherapy in anti-cancer treatment: therapeutics design and perspectives. J Pharm Investig 46:505–517

    Article  CAS  Google Scholar 

  • Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R (2005) Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew Chem Int Ed 117:4129–4134

    Article  Google Scholar 

  • Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X (2013) Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials 34:3020–3030

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Li Y, Sun TM, Xiong MH, Wu J, Yang YY, Wang J (2010a) Core-shell-corona micelle stabilized by reversible cross-linkage for intracellular drug delivery. Macromol Rapid Commun 31:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Han P, Xu H, Wang Z, Zhang X, Kabanov AV (2010b) Photocontrolled selfassembly and disassembly of block ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26:709–715

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Yin T, Li J, Zheng B, Wang X, Wang Y, Zheng J, Zheng R, Shuai X (2016) Ultrasound-responsive microbubbles for sonography-guided 2 siRNA delivery. Nanomedicine 12:1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Jin Y, Zhu X, Yan D (2017a) Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog Polym Sci 64:114–153

    Article  CAS  Google Scholar 

  • Wang C, Zhang G, Liu G, Hu J, Liu S (2017b) Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J Control Release 259:149–159

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Liu Y, Zhang X, Luo L, Li L, Xing S, He Y, Cao w, Zhu R, Gao D (2017) Gold nanoshell coated thermo-pH dual responsive liposomes for resveratrol delivery and chemophotothermal synergistic cancer therapy. J Mater Chem B 5: 2161

  • Wright ER, Conticello VP (2002) Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Deliv Rev 54:1057–1073

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhu L, Torchilin VP (2013) pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials 34:1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Xin Y, Huang Q, Tang JQ, Hou XY, Zhang P, Zhang LZ, Jiang G (2016) Nanoscale drug delivery for targeted chemotherapy. Cancer Lett 379:24–31

    Article  CAS  PubMed  Google Scholar 

  • Xing H, Zhang CL, Ruan G, Zhang J, Hwang K, Lu Y (2016) Multimodal detection of a small molecule target using stimuli-responsive liposome triggered by aptamer-enzyme conjugate.Chemistry 88: 1506–1510

  • Xu JH, Gao FP, Li LL, Ma HL, Fan YS, Liu W, Guo SS (2013) Gelatin–mesoporous silica nanoparticles as matrix metalloproteinases-degradable drug delivery systems in vivo. Micropor Mesopor Mat 182:165–172

    Article  CAS  Google Scholar 

  • Xu Z, Wang D, Xu S, Liu X, Zhang X, Zhang H (2014) Preparation of a camptothecin prodrug with glutathione-responsive disulfide linker for anticancer drug delivery. Chem Asian J 9:199–205

    Article  CAS  PubMed  Google Scholar 

  • Yang HW, Hua MY, Liu HL, Huang CY, Tsai RY, Lu YJ, Tang HJ, Hsien HY, Chang YS (2011a) Self-protecting core–shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials 32:6523–6532

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Aw J, Chen K, Liu F, Padmanabhan P, Hou Y, Cheng Z, Xing B (2011b) Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem Asian J 6:1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Sun X, Liu J, Feng L, Li Z (2016) Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Adv Funct Mater 26:4722–4732

    Article  CAS  Google Scholar 

  • Yin Q, Shen J, Chen L, Zhang Z, Gu W, Li Y (2012) Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(β-amino esters). Biomaterials 33:6495–6506

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhang H, Ding JD (2006) A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angew Chem Int Ed 45:2232–2235

    Article  CAS  Google Scholar 

  • Yu H, Xu Z, Chen X, Xu L, Yin Q, Zhang Z, Li Y (2014) Reversal of lung cancer multidrug resistance by pH-responsive micelleplexes mediating co-delivery of siRNA and paclitaxel. Macromol Biosci 14:100–109

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q, Zhang Y, Chen T, Lu D, Zhao Z, Zhang X, Li Z, Yan CH, Tan W (2012) Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano 6:6337–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Jia F, Fleming MQ, Mallapragada SK (2012a) Injectable self-assembled block copolymers for sustained gene and drug co-delivery: an in vitro study. Int J Pharm 427:88–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang T, Yang L, Liu C, Wang C, Liu H, Wang YA, Su Z (2012b) General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem Eur J 18:12512–12521

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xiao C, Li M, Chen J, Ding J, He C, Zhuang X, Chen X (2013) Co-delivery of 10-hydroxycamptothecin with doxorubicin conjugated prodrugs for enhanced anticancer efficacy. Macromol Biosci 13:584–594

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu B, Yang Z, Zhang C, Li H, Luo X, Luo H, Gao D, Jiang Q, Liu J, Jiang Z (2014) Micelles of enzymatically synthesized PEG-poly(amine-co-ester) block copolymers as pH-responsive nanocarriers for docetaxel delivery. Coll Surf B 115:349–358

    Article  CAS  Google Scholar 

  • Zhang C, Zhang J, Shi G, Song H, Shi S, Zhang X, Huang P, Wang Z, Wang W, Wang C, Kong D, Li C (2017) A light responsive nanoparticle-based delivery system using pheophorbide a graft polyethylenimine for dendritic cell-based cancer immunotherapy. Mol Pharm 14:1760–1770

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Fan X, Liu D, Wang Z (2011) PEGylated thermo-sensitive poly(amidoamine) dendritic drug delivery systems. Int J Pharm 409:229–236

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Liu Y, Hsieh RS, Wang N, Tai W, Joo KI, Wang P, Gu Z, Tang Y (2014) Clickable protein nanocapsules for targeted delivery of recombinant p53 protein. J Am Chem Soc 136:15319–15325

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6:3491–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Wang T, Perche F, Taigind A, Torchilin VP (2013) Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Nat Acad Sci USA 110:17047–17052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Sun Y, Li W (2016) Anti-tumor nano immunotherapy based on elaborate carriers tailoring. Nanomedicine 12:482

    Article  Google Scholar 

  • Zong W, Hu Y, Su Y, Luo N, Zhang X, Li Q, Han X (2016) Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers. Microencapsul 33:257–262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01004118, 2015R1A2A2A04004806), and a grant (16173MFDS542) from Ministry of Food and Drug Safety in 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Soon Yong or Jong Oh Kim.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruttala, H.B., Ramasamy, T., Madeshwaran, T. et al. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch. Pharm. Res. 41, 111–129 (2018). https://doi.org/10.1007/s12272-017-0995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0995-x

Keywords

Navigation