Skip to main content

Advertisement

Log in

Combined phototherapy in anti-cancer treatment: therapeutics design and perspectives

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Photodynamic (PDT) and photothermal (PTT) therapy are proven effective strategies for the treatment of cancer. PDT, a photochemistry-based therapy, utilises light energy based photosensitiser for the production of cytotoxic species via electron transfer to biological substrates and potential excitation or energy transfer to molecular oxygen. On the other hand, PTT utilises substances that can convert light energy into heat for efficient tumour ablation. This review provides an insight into the current research investigations of different nanocarriers utilising the synergistic effects of PTT and PDT for anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reprinted with permission from Wang et al. 2012. Copyright© 2012 American Chemical Society)

Fig. 2

(Reprinted with permission from Jang et al. 2011. Copyright© 2012 American Chemical Society). (Color figure online)

Fig. 3

(Reprinted with permission from Wang et al. 2014b. Copyright© 2014 Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014)

Fig. 4

(Reprinted with permission from Vankayala et al. 2014. Copyright© 2014 Elsevier Ltd). (Color figure online)

Fig. 5

(Reprinted with permission from Liu et al. 2014. Copyright© 2014 Royal Society of Chemistry)

Fig. 6

(Reprinted with permission from Wang et al. 2013. Copyright© 2013 Elsevier Ltd). (Color figure online)

Fig. 7

(Reprinted with permission from Kim et al. 2015. Copyright© 2015 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim). (Color figure online)

Fig. 8

(Reprinted with permission from Zhao et al. 2014b. Copyright© 2014 IOP Publishing Ltd)

Fig. 9

(Reprinted with permission from Guo et al. 2014. Copyright© 2014 Elsevier Ltd)

Fig. 10

(Reprinted with permission from Li et al. 2015. Copyright© 2015 Elsevier Ltd). (Color figure online)

Fig. 11

(Reprinted with permission from Song et al. 2015. Copyright© 2015 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim)

Fig. 12

(Reprinted with permission from Liu et al. 2014. Copyright© 2014 Royal Society of Chemistry). (Color figure online)

Similar content being viewed by others

References

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitisers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293

    Article  CAS  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two—cellular signalling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2:1–23

    Article  CAS  Google Scholar 

  • Chen R, Wang X, Yao X, Zheng X, Wang J, Jiang X (2013) Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 34:8314–8322

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Wang C, Cheng L, He W, Cheng Z, Liu Z (2014) Protein modified up-conversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 35:2915–2923

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Fei J, Zhao J, Li H, Cui Y, Li J (2012) Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 6:8030–8040

    Article  CAS  PubMed  Google Scholar 

  • Gollavelli G, Ling Y-C (2014) Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials 35:4499–4507

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Dong Z, Liu Y, Yin S, Cheng L, Xi W, Xiang J, Liu K, Li Y, Liu Z (2014) Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv Funct Mater 24:6492–6502

    Article  CAS  Google Scholar 

  • Guo M, Mao H, Li Y, Zhu A, He H, Yang H, Wang Y, Tian X, Ge C, Peng Q, Wang X, Yang X, Chen X, Liu G, Chen H (2014) Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35:4656–4666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Zhao F, Wang Y, Huang Y, Chen L, Li N, Li J, Li Z, Yi G (2014) Facile fabrication of a C 60–polydopamine–graphene nanohybrid for single light induced photothermal and photodynamic therapy. Chem Commun 50:10815–10818

    Article  CAS  Google Scholar 

  • Hwang S, Nam J, Jung S, Song J, Doh H, Kim S (2014) Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine 9:2003–2022

    Article  CAS  PubMed  Google Scholar 

  • Jang B, Park J-Y, Tung C-H, Kim I-H, Choi Y (2011) Gold nanorod—photosensitiser complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Cheng H, Yuan A, Tang X, Wu J, Hu Y (2015) Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater 14:61–69

    Article  CAS  PubMed  Google Scholar 

  • Juzeniene A, Nielsen KP, Moan J (2006) Biophysical aspects of photodynamic therapy. J Environ Pathol Toxicol Oncol 25:7–28

    Article  CAS  PubMed  Google Scholar 

  • Kim J-Y, Choi WI, Kim M, Tae G (2013) Tumour-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J Controll Release 171:113–121

    Article  CAS  Google Scholar 

  • Kim Y-K, Na H-K, Kim S, Jang H, Chang S-J, Min D-H (2015) One-pot synthesis of multifunctional Au@Graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small 11:2527–2535

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu Y, Hao P, Wang Z, Fu L, Ma Z, Zhou J (2015) PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and II window. Biomaterials 41:132–140

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G (2013) Photosensitiser-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7:5320–5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Wang C, Cui W, Gong H, Liang C, Shi X, Li Z, Sun B, Liu Z (2014) Combined photothermal and photodynamic therapy delivered by PEGylated MoS 2 nanosheets. Nanoscale 6:11219–11225

    Article  CAS  PubMed  Google Scholar 

  • Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042

    Article  CAS  PubMed  Google Scholar 

  • Lv R, Yang P, He F, Gai S, Yang G, Dai Y, Hou Z, Lin J (2015) An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release. Biomaterials 63:115–127

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Yoon H, Park J-H (2013) Nanoparticle platforms for combined photothermal and photodynamic therapy. Biomed Eng Lett 3:67–73

    Article  Google Scholar 

  • Oh J, Yoon H-J, Park J-H (2014) Plasmonic liposomes for synergistic photodynamic and photothermal therapy. J Mater Chem B 2:2592–2597

    Article  CAS  Google Scholar 

  • Robertson C, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sahu A, Choi WI, Lee JH, Tae G (2013) Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34:6239–6248

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Zhu X, Zhao Z, Fang W, Chen M, Huang Y, Chen X (2013) Photothermally enhanced photodynamic therapy based on mesoporous Pd@ Ag@ m SiO2 nanocarriers. J Mater Chem B 1:1133–1141

    Article  CAS  Google Scholar 

  • Song X, Liang C, Gong H, Chen Q, Wang C, Liu Z (2015) Photosensitiser-conjugated albumin—polypyrrole nanoparticles for imaging-guided in vivo photodynamic/photothermal therapy. Small 11:3932–3941

    Article  CAS  PubMed  Google Scholar 

  • Taratula O, Patel M, Schumann C, Naleway MA, Pang AJ, He H, Taratula O (2015) Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. Int J Nanomed 10:2347–2362

    Article  CAS  Google Scholar 

  • Terentyuk G, Panfilova E, Khanadeev V, Chumakov D, Genina E, Bashkatov A, Tuchin V, Bucharskaya A, Maslyakova G, Khlebtsov N (2014) Gold nanorods with a haematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumours in vivo. Nano Res 7:325–337

    Article  CAS  Google Scholar 

  • Tian B, Wang C, Zhang S, Feng L, Liu Z (2011) Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5:7000–7009

    Article  CAS  PubMed  Google Scholar 

  • Toraya-Brown S, Fiering S (2014) Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperth 30:531–539

    Article  CAS  Google Scholar 

  • Vankayala R, Lin C-C, Kalluru P, Chiang C-S, Hwang KC (2014) Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials 35:5527–5538

    Article  CAS  PubMed  Google Scholar 

  • Wan Z, Mao H, Guo M, Li Y, Zhu A, Yang H, He H, Shen J, Zhou L, Jiang Z, Ge C, Chen X, Yang X, Liu G, Chen H (2014) Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergised chemotherapy for cancer eradication. Theranostics 4:399–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ (2012) Assembly of aptamer switch probes and photosensitiser on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6:5070–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang H, Liu D, Song S, Wang X, Zhang H (2013) Graphene oxide covalently grafted up-conversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 34:7715–7724

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wang J-H, Liu Q, Huang H, Chen M, Li K, Li C, Yu X-F, Chu PK (2014a) Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 35:1954–1966

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Zhao Z, Lv Y, Fan H, Bai H, Meng H, Long Y, Fu T, Zhang X, Tan W (2014b) Gold nanorod-photosensitiser conjugate with extracellular pH-driven tumour targeting ability for photothermal/photodynamic therapy. Nano Res 7:1291–1301

    Article  CAS  Google Scholar 

  • Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    Article  CAS  PubMed  Google Scholar 

  • Yong Y, Zhou L, Gu Z, Yan L, Tian G, Zheng X, Liu X, Zhang X, Shi J, Cong W (2014) WS 2 nanosheet as a new photosensitiser carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 6:10394–10403

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Huang Y, Shi S, Tang S, Li D, Chen X (2014a) Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy. Nanotechnology 25:285701

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Shi S, Huang Y, Tang S, Chen X (2014b) Simultaneous photodynamic and photothermal therapy using photosensitiser-functionalized Pd nanosheets by single continuous wave laser. ACS Appl Mater Interfaces 6:8878–8885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant (16173MFDS542) from Ministry of Food and Drug Safety in 2016.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Oh Kim or Han-Gon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.H., Thapa, R.K., Nguyen, H.T. et al. Combined phototherapy in anti-cancer treatment: therapeutics design and perspectives. Journal of Pharmaceutical Investigation 46, 505–517 (2016). https://doi.org/10.1007/s40005-016-0272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0272-x

Keywords

Navigation