Skip to main content
Log in

Biological Functions and Clinical Prospects of Extracellular Non-Coding RNAs in Diabetic Cardiomyopathy: an Updated Review

  • Review Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Diabetic cardiomyopathy (DCM) is one of the major causes of heart failure in diabetic patients. However, the pathogenesis of diabetic cardiomyopathy has not been fully elucidated. Diagnosis and therapeutic strategy of DCM is still challenging. Various non-coding RNAs (ncRNA) are implicated in the onset and progression of DCM. Interestingly, ncRNAs not only are regulators intracellularly, but also can exist and function in extracellular space. Recent evidences have demonstrated that extracellular ncRNAs play emerging roles in both intracardiac and inter-organ communication during the pathogenesis of DCM; thus, extracellular ncRNAs are attractive diagnostic biomarkers and potential therapeutic targets for DCM. This article will review the current knowledge of the roles of extracellular ncRNAs in DCM, especially focusing on their physio-pathological properties and perspectives of potential clinical translation for biomarkers and therapies.

Graphical abstract

Recent evidences have demonstrated that extracellular ncRNA play emerging roles in both intracardiac and inter-organ communication involved in the pathogenesis of diabetic cardiomyopathy (DCM), thus shown as attractive diagnostic biomarkers and potential therapeutics for DCM. In the current review, we first summarize the progress regarding the paracrine role of extracellular ncRNA in DCM. miRNAs and circRNAs have been shown to mediate the communication among cardiomyocytes, endothelial cells, and vascular smooth muscle cells in the diabetic heart. Subsequently, we systematically describe that extracellular ncRNAs contribute to the crosstalk between the heart and other organs in the context of diabetes. Researches have indicated that miRNAs acted as hepatokines and adipokines to mediates the injure effect of distal organs on hearts. As for clinical application, extracellular ncRNAs are promising biomarker and have therapeutic potential. (Created with BioRender.com)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DCM:

Diabetic cardiomyopathy

ncRNA:

Non-coding RNAs

DM:

Diabetes mellitus

HF:

Heart failure

CHD:

Coronary heart disease

DPP-4:

Dipeptidylpeptidase-4

GLP-1:

Glucagon-like peptide-1

SGLT2:

Sodium-dependent glucose transporters 2

lncRNA:

Long ncRNA

miRNA:

MicroRNA

siRNA:

Short interfering RNA

snoRNA:

Small nuclear RNA

piRNA:

Piwi-interacting RNA

ECM:

Extracellular matrix

EVs:

Extracellular vesicles

MVB:

Multi-vesicular body

T2D:

Type 2 diabetes

MCECs:

Mouse cardiac endothelial cells

CMR:

Cardiac magnetic resonance

References

  1. H. Wang, N. Li, T. Chivese, M. Werfalli, H. Sun, L. Yuen, C. Ambrosius Hoegfeldt, C. Elise Powe, J. Immanuel, S. Karuranga, H. Divakar, N. Levitt, C. Li, D. Simmons, X. Yang, IDF Diabetes atlas: Global and regional estimate of gestational diabetes mellitus prevalence for 2019-2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria, Diabetes Research Clinical Practice (2021) 183:109050.

  2. Tan, Y., Zhang, Z., Zheng, C., Wintergerst, K. A., Keller, B. B., & Cai, L. (2020). Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nature Reviews Cardiology, 17(9), 585–607.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jia, G., Hill, M. A., & Sowers, J. R. (2018). Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circulation Research, 122(4), 624–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varma, U., Koutsifeli, P., Benson, V. L., Mellor, K. M., & Delbridge, L. M. D. (2018). Molecular mechanisms of cardiac pathology in diabetes - Experimental insights. Biochimica Biophysica Acta Molecular Basis Disease, 1864(5 Pt B), 1949–1959.

    Article  CAS  Google Scholar 

  5. Beermann, J., Piccoli, M.-T., Viereck, J., & Thum, T. (2016). Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev, 96(4), 1297–1325.

    Article  CAS  PubMed  Google Scholar 

  6. Matsui, M., & Corey, D. R. (2017). Non-coding RNAs as drug targets. Nature Reviews Drug Discovery, 16(3), 167–179.

    Article  CAS  PubMed  Google Scholar 

  7. Fasolo, F., Di Gregoli, K., Maegdefessel, L., & Johnson, J. L. (2019). Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovascular Research, 115(12), 1732–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, H., Fan, J., Chen, C., & Wang, D. W. (2020). Subcellular microRNAs in diabetic cardiomyopathy. Annals Translational Medicine, 8(23), 1602.

    Article  CAS  Google Scholar 

  9. Jakubik, D., Fitas, A., Eyileten, C., Jarosz-Popek, J., Nowak, A., Czajka, P., Wicik, Z., Sourij, H., Siller-Matula, J. M., De Rosa, S., & Postula, M. (2021). MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovascular Diabetology, 20(1), 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sato-Kuwabara, Y., Melo, S. A., Soares, F. A., & Calin, G. A. (2015). The fusion of two worlds: non-coding RNAs and extracellular vesicles--diagnostic and therapeutic implications (Review). International Journal of Oncology, 46(1), 17–27.

    Article  CAS  PubMed  Google Scholar 

  11. Videira, R. F., & da Costa Martins, P. A. (2020). Non-coding RNAs in cardiac intercellular communication. Front Physiology, 11, 738.

    Article  Google Scholar 

  12. Hu, W., Liu, C., Bi, Z.-Y., Zhou, Q., Zhang, H., Li, L.-L., Zhang, J., Zhu, W., Song, Y.-Y.-Y., Zhang, F., Yang, H.-M., Bi, Y.-Y., He, Q.-Q., Tan, G.-J., Sun, C.-C., & Li, D.-J. (2020). Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Molecular Cancer, 19(1), 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anfossi, S., Babayan, A., Pantel, K., & Calin, G. A. (2018). Clinical utility of circulating non-coding RNAs - An update. Nature Reviews Clinical Oncology, 15(9), 541–563.

    Article  PubMed  Google Scholar 

  14. Xiao, Y., Zheng, L., Zou, X., Wang, J., Zhong, J., & Zhong, T. (2019). Extracellular vesicles in type 2 diabetes mellitus: Key roles in pathogenesis, complications, and therapy. Journal of Extracellular Vesicles, 8(1), 1625677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., & Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13(4), 423–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turchinovich, A., Weiz, L., Langheinz, A., & Burwinkel, B. (2011). Characterization of extracellular circulating microRNA. Nucleic Acids Research, 39(16), 7223–7233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colombo, M., Raposo, G., & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell Development Biology, 30, 255–289.

    Article  CAS  Google Scholar 

  18. Mulcahy, L. A., Pink, R. C., & Carter, D. R. F. (2014). Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles, 4, 3.

    Google Scholar 

  19. Joshi, B. S., de Beer, M. A., Giepmans, B. N. G., & Zuhorn, I. S. (2020). Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano, 14(4), 4444–4455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han, C., Yang, J., Sun, J., Qin, G. (2021). Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. Pharmacology & Therapeutics, 108025.

  21. Liang, Y., Lehrich, B. M., Zheng, S., & Lu, M. (2021). Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. Journal of Extracellular Vesicles, 10(7), e12090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang, M., Jordan, V., Blenkiron, C., & Chamley, L. W. (2021). Biodistribution of extracellular vesicles following administration into animals: A systematic review. Journal of Extracellular Vesicles, 10(8), e12085.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Catalano, M., & O'Driscoll, L. (2020). Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. Journal of Extracellular Vesicles, 9(1), 1703244.

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen, V. V. T., Witwer, K. W., Verhaar, M. C., Strunk, D., & van Balkom, B. W. M. (2020). Functional assays to assess the therapeutic potential of extracellular vesicles. Journal of Extracellular Vesicles, 10(1), e12033.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yin, Y., Chen, H., Wang, Y., Zhang, L., & Wang, X. (2021). Roles of extracellular vesicles in the aging microenvironment and age-related diseases. Journal of Extracellular Vesicles, 10(12), e12154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinto, A. R., Ilinykh, A., Ivey, M. J., Kuwabara, J. T., D'Antoni, M. L., Debuque, R., Chandran, A., Wang, L., Arora, K., Rosenthal, N. A., & Tallquist, M. D. (2016). Revisiting cardiac cellular composition. Circulation Research, 118(3), 400–409.

    Article  CAS  PubMed  Google Scholar 

  27. Banerjee, I., Fuseler, J. W., Price, R. L., Borg, T. K., & Baudino, T. A. (2007). Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. American Journal of Physiology-Heart and Circulatory Physiology, 293(3), H1883–H1891.

    Article  CAS  PubMed  Google Scholar 

  28. Shome, J. S., Perera, D., Plein, S., & Chiribiri, A. (2017). Current perspectives in coronary microvascular dysfunction. Microcirculation, 24(1).

  29. Lopez, J. J., Laham, R. J., Carrozza, J. P., Tofukuji, M., Sellke, F. W., Bunting, S., & Simons, M. (1997). Hemodynamic effects of intracoronary VEGF delivery: Evidence of tachyphylaxis and NO dependence of response. American Journal of Physiology, 273(3 Pt 2), H1317–H1323.

    CAS  PubMed  Google Scholar 

  30. Widyantoro, B., Emoto, N., Nakayama, K., Anggrahini, D. W., Adiarto, S., Iwasa, N., Yagi, K., Miyagawa, K., Rikitake, Y., Suzuki, T., Kisanuki, Y. Y., Yanagisawa, M., & Hirata, K.-I. (2010). Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation, 121(22), 2407–2418.

    Article  CAS  PubMed  Google Scholar 

  31. Sluijter, J. P., Verhage, V., Deddens, J. C., van den Akker, F., & Doevendans, P. A. (2014). Microvesicles and exosomes for intracardiac communication. Cardiovascular Research, 102(2), 302–311.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X., Huang, W., Liu, G., Cai, W., Millard, R. W., Wang, Y., Chang, J., Peng, T., & Fan, G. C. (2014). Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. Journal of Molecular and Cellular Cardiology, 74, 139–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia, N. A., Ontoria-Oviedo, I., González-King, H., Diez-Juan, A., & Sepúlveda, P. (2015). Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One, 10(9), e0138849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chaturvedi, P., Kalani, A., Medina, I., Familtseva, A., & Tyagi, S. C. (2015). Cardiosome mediated regulation of MMP9 in diabetic heart: Role of mir29b and mir455 in exercise. Journal of Cellular and Molecular Medicine, 19(9), 2153–2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, S., Zhan, J., Lin, X., Wang, Y., Wang, Y., & Liu, Y. (2020). CircRNA-0077930 from hyperglycaemia-stimulated vascular endothelial cell exosomes regulates senescence in vascular smooth muscle cells. Cell Biochemistry and Function, 38(8), 1056–1068.

    Article  CAS  PubMed  Google Scholar 

  36. Khalil, N. N., & McCain, M. L. (2021). Engineering the cellular microenvironment of post-infarct myocardium on a chip. Front Cardiovascular Medicine, 8, 709871.

    Article  CAS  Google Scholar 

  37. Cecen, B., Karavasili, C., Nazir, M., Bhusal, A., Dogan, E., Shahriyari, F., Tamburaci, S., Buyukoz, M., Kozaci, L. D., & Miri, A. K. (2021). Multi-organs-on-chips for testing small-molecule drugs: Challenges and perspectives. Pharmaceutics, 13(10), 1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Severinsen, M. C. K., Pedersen, B. K. (2020). Muscle-organ crosstalk: The emerging roles of myokines. Endocrine Reviews, 41(4).

  39. Meex, R. C. R., & Watt, M. J. (2017). Hepatokines: Linking nonalcoholic fatty liver disease and insulin resistance. Nature Reviews Endocrinology, 13(9), 509–520.

    Article  CAS  PubMed  Google Scholar 

  40. Fasshauer, M., & Blüher, M. (2015). Adipokines in health and disease. Trends in Pharmacological Sciences, 36(7), 461–470.

    Article  CAS  PubMed  Google Scholar 

  41. Li, C.-J., Fang, Q.-H., Liu, M.-L., & Lin, J.-N. (2020). Current understanding of the role of adipose-derived extracellular vesicles in metabolic homeostasis and diseases: Communication from the distance between cells/tissues. Theranostics, 10(16), 7422–7435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fang, X., Stroud, M. J., Ouyang, K., Fang, L., Zhang, J., Dalton, N. D., Gu, Y., Wu, T., Peterson, K. L., Huang, H.-D., Chen, J., & Wang, N. (2016). Adipocyte-specific loss of PPAR attenuates cardiac hypertrophy. JCI Insight, 1(16), e89908.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gan, L., Xie, D., Liu, J., Bond Lau, W., Christopher, T. A., Lopez, B., Zhang, L., Gao, E., Koch, W., Ma, X.-L., & Wang, Y. (2020). Small extracellular microvesicles mediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice. Circulation, 141(12), 968–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y., Jin, P., Liu, J., & Xie, X. (2019). Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clinical Science (Lond), 133(17), 1871–1881.

    Article  CAS  Google Scholar 

  45. Nie, H., Pan, Y., & Zhou, Y. (2018). Exosomal microRNA-194 causes cardiac injury and mitochondrial dysfunction in obese mice. Biochemical Biophysical Research Communications, 503(4), 3174–3179.

    Article  CAS  PubMed  Google Scholar 

  46. Li, F., Zhang, K., Xu, T., Du, W., Yu, B., Liu, Y., & Nie, H. (2019). Exosomal microRNA-29a mediates cardiac dysfunction and mitochondrial inactivity in obesity-related cardiomyopathy. Endocrine, 63(3), 480–488.

    Article  CAS  PubMed  Google Scholar 

  47. Xu, M.-Y., Ye, Z.-S., Song, X.-T., & Huang, R.-C. (2019). Differences in the cargos and functions of exosomes derived from six cardiac cell types: A systematic review. Stem Cell Research and Therapy, 10(1), 194.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sun, L.-L., Duan, M.-J., Ma, J.-C., Xu, L., Mao, M., Biddyut, D., Wang, Q., Yang, C., Zhang, S., Xu, Y., Yang, L., Tian, Y., Liu, Y., Xia, S.-N., Li, K.-X., Jin, Z., Xiong, Q., & Ai, J. (2018). Myocardial infarction-induced hippocampal microtubule damage by cardiac originating microRNA-1 in mice. Journal of Molecular and Cellular Cardiology, 120, 12–27.

    Article  CAS  PubMed  Google Scholar 

  49. Paolillo, S., Marsico, F., Prastaro, M., Renga, F., Esposito, L., De Martino, F., Di Napoli, P., Esposito, I., Ambrosio, A., Ianniruberto, M., Mennella, R., Paolillo, R., & Gargiulo, P. (2019). Diabetic cardiomyopathy: Definition, diagnosis, and therapeutic implications. Heart Failure Clinics, 15(3), 341–347.

    Article  PubMed  Google Scholar 

  50. de Gonzalo-Calvo, D., van der Meer, R. W., Rijzewijk, L. J., Smit, J. W. A., Revuelta-Lopez, E., Nasarre, L., Escola-Gil, J. C., Lamb, H. J., & Llorente-Cortes, V. (2017). Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Scientific Reports, 7(1), 47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tao, L., Huang, X., Xu, M., Qin, Z., Zhang, F., Hua, F., Jiang, X., & Wang, Y. (2020). Value of circulating miRNA-21 in the diagnosis of subclinical diabetic cardiomyopathy. Molecular and Cellular Endocrinology, 518, 110944.

    Article  CAS  PubMed  Google Scholar 

  52. Pofi, R., Giannetta, E., Galea, N., Francone, M., Campolo, F., Barbagallo, F., Gianfrilli, D., Venneri, M. A., Filardi, T., Cristini, C., Antonini, G., Badagliacca, R., Frati, G., Lenzi, A., Carbone, I., & Isidori, A. M. (2021). Diabetic cardiomiopathy progression is triggered by miR122-5p and involves extracellular matrix: A 5-year prospective study. JACC Cardiovasc Imaging, 14(6), 1130–1142.

    Article  PubMed  Google Scholar 

  53. Li, H., Fan, J., Zhao, Y., Zhang, X., Dai, B., Zhan, J., Yin, Z., Nie, X., Fu, X.-D., Chen, C., & Wang, D. W. (2019). Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circulation Research, 125(12), 1106–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Copier, C. U., León, L., Fernández, M., Contador, D., & Calligaris, S. D. (2017). Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy. Scientific Reports, 7(1), 13514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Pant, T., Dhanasekaran, A., Zhao, M., Thorp, E. B., Forbess, J. M., Bosnjak, Z. J., Benjamin, I. J., & Ge, Z.-D. (2021). Identification and analysis of circulating long non-coding RNAs with high significance in diabetic cardiomyopathy. Scientific Reports, 11(1), 2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, X., He, Y., Mackowiak, B., & Gao, B. (2021). MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 70(4), 784–795.

    Article  CAS  PubMed  Google Scholar 

  57. Ling, H. (2016). Non-coding RNAs: Therapeutic strategies and delivery systems. Advances Experimental Medicine and Biology, 937, 229–237.

    Article  CAS  Google Scholar 

  58. Huang, C.-K., Kafert-Kasting, S., & Thum, T. (2020). Preclinical and clinical development of noncoding RNA Therapeutics for cardiovascular disease. Circulation Research, 126(5), 663–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (nos. 81822002, 31771264, and 82100375). The funders had no role in the study design, data collection and analysis, manuscript preparation, or decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Ethics declarations

Consent to Participate

No human studies were carried out by the authors for this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Chen, C. Biological Functions and Clinical Prospects of Extracellular Non-Coding RNAs in Diabetic Cardiomyopathy: an Updated Review. J. of Cardiovasc. Trans. Res. 15, 469–476 (2022). https://doi.org/10.1007/s12265-022-10217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10217-0

Keywords

Navigation