Skip to main content

Advertisement

Log in

Novel drug-delivery approaches to the blood-brain barrier

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The blood-brain barrier (BBB) maintains homeostasis by blocking toxic molecules from the circulation, but drugs are blocked at the same time. When the dose is increased to enhance the drug concentration in the central nervous system, there are side-effects on peripheral organs. In recent years, genetic therapeutic agents and small molecules have been used in various strategies to penetrate the BBB while minimizing the damage to systemic organs. In this review, we describe several representative methods to circumvent or cross the BBB, including chemical and physical strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pardridge WM. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov Today 2002, 7: 5–7.

    Article  PubMed  Google Scholar 

  2. Hosoya K, Tachikawa M. The inner blood-retinal barrier: molecular structure and transport biology. Adv Exp Med Biol 2012, 763: 85–104.

    CAS  PubMed  Google Scholar 

  3. Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep 2008, 41: 345–352.

    Article  CAS  PubMed  Google Scholar 

  4. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008, 57: 178–201.

    Article  CAS  PubMed  Google Scholar 

  5. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010, 468: 562–566.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Dyrna F, Hanske S, Krueger M, Bechmann I. The blood-brain barrier. J Neuroimmune Pharmacol 2013, 8: 763–773.

    Article  PubMed  Google Scholar 

  7. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005, 57: 173–185.

    Article  CAS  PubMed  Google Scholar 

  8. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Bloodbrain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006, 1: 223–236.

    Article  PubMed  Google Scholar 

  9. Bauer HC, Bauer H, Lametschwandtner A, Amberger A, Ruiz P, Steiner M. Neovascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Brain Res Dev Brain Res 1993, 75: 269–278.

    Article  CAS  PubMed  Google Scholar 

  10. Lyck R RN, Moll AG, Steiner O, Cohen CD, Engelhardt B, et al. Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab 2009, 29: 1491–1502.

    Article  CAS  PubMed  Google Scholar 

  11. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990, 429: 47–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ek CJ, Dziegielewska KM, Stolp H, Saunders NR. Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol 2006, 496: 13–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997, 110(Pt 14): 1603–1613.

    CAS  PubMed  Google Scholar 

  14. Kniesel U, Risau W, Wolburg H. Development of blood-brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res 1996, 96: 229–240.

    Article  CAS  PubMed  Google Scholar 

  15. Bolz S, Farrell CL, Dietz K, Wolburg H. Subcellular distribution of glucose transporter (GLUT-1) during development of the blood-brain barrier in rats. Cell Tissue Res 1996, 284: 355–365.

    Article  CAS  PubMed  Google Scholar 

  16. Gonda I. S ystemic delivery of drugs to humans via inhalation. J Aerosol Med 2006, 19: 47–53.

    Article  CAS  PubMed  Google Scholar 

  17. William Ewart. The use of creosoted oil for the expulsion of tracheal false membranes after tracheotomy; and of intranasal injections of oil in various affection. Br Med J 1898, 1: 1381–1383.

    Article  Google Scholar 

  18. Wu S. Intra nasal Delivery of Neural Stem Cells: A CNS-specific, Non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. J Clin Cell Immunol 2013, 4.

    Google Scholar 

  19. Ueno H, Mizuta M, Shiiya T, Tsuchimochi W, Noma K, Nakashima N, et al. Exploratory trial of intranasal administration of glucagon-like Peptide-1 in Japanese patients with type 2 diabetes. Diabetes Care 2014, 37: 2024–2027.

    Article  CAS  PubMed  Google Scholar 

  20. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011, 29: 341–345.

    Article  CAS  PubMed  Google Scholar 

  21. Sluijter JP, Verhage V, Deddens JC, van den Akker F, Doevendans PA. Microvesicles and exosomes for intracardiac communication. Cardiovasc Res 2014, 102: 302–311.

    Article  CAS  PubMed  Google Scholar 

  22. Johnstone R, Adam M, Hammond J, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987, 262: 9412–9420.

    CAS  PubMed  Google Scholar 

  23. Moore DB, Gillentine MA, Botezatu NM, Wilson KA, Benson AE, Langeland JA. Asynchronous evolutionary origins of Abeta and BACE1. Mol Biol Evol 2014, 31: 696–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 2011, 31: 13272–13280.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014, 81: 49–60.

    Article  CAS  PubMed  Google Scholar 

  26. Matsunaga N, Okazaki F, Koyanagi S, Ohdo S. Chrono-drug delivery system based on the circadian rhythm of transferrin receptor. Nihon Rinsho 2013, 71: 2200–2205.

    PubMed  Google Scholar 

  27. Yang Y, Zhang X, Wang X, Zhao X, Ren T, Wang F, et al. Enhanced delivery of artemisinin and its analogues to cancer cells by their adducts with human serum transferrin. Int J Pharm 2014, 467: 113–122.

    Article  CAS  PubMed  Google Scholar 

  28. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol 2014, 247: 291–307.

    Article  CAS  PubMed  Google Scholar 

  29. Rempe R, Cramer S, Qiao R, Galla HJ. Strategies to overcome the barrier: use of nanoparticles as carriers and modulators of barrier properties. Cell Tissue Res 2014, 355: 717–726.

    Article  CAS  PubMed  Google Scholar 

  30. Gao H, Pang Z, Jiang X. Targeted delivery of nanotherapeutics for major disorders of the central nervous system. Pharm Res 2013, 30: 2485–2498.

    Article  CAS  PubMed  Google Scholar 

  31. Kreuter J. Drug deliver y to the central nervous system by polymeric nanoparticles: What do we know? Adv Drug Deliv Rev 2014, 71: 2–14.

    Article  CAS  PubMed  Google Scholar 

  32. Tan R, Niu M, Zhao J, Liu Y, Feng N. Preparation of vincristine sulfate-loaded poly (butylcyanoacrylate) nanoparticles modified with pluronic F127 and evaluation of their lymphatic tissue targeting. J Drug Target 2014, 22: 509–517.

    Article  CAS  PubMed  Google Scholar 

  33. Chung CY, Yang JT, Kuo YC. Polybutylcyanoacrylate nanoparticles for delivering hormone response elementconjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials 2013, 34: 9717–9727.

    Article  CAS  PubMed  Google Scholar 

  34. Lin Y, Pan Y, Shi Y, Huang X, Jia N, Jiang JY. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. Nanotechnology 2012, 23: 165101.

    Article  PubMed  Google Scholar 

  35. Kuo YC, Chung CY. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids Surf B Biointerfaces 2012, 91: 242–249.

    Article  CAS  PubMed  Google Scholar 

  36. Huang JY, Lu YM, Wang H, Liu J, Liao MH, Hong LJ, et al. The effect of lipid nanoparticle PEGylation on neuroinflammatory response in mouse brain. Biomaterials 2013, 34: 7960–7970.

    Article  CAS  PubMed  Google Scholar 

  37. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, et al. Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 2013, 4: 1352–1360.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem 2013, 24: 997–1007.

    Article  CAS  PubMed  Google Scholar 

  39. Chen YC, Hsieh WY, Lee WF, Zeng DT. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier. J Biomater Appl 2013, 27: 909–922.

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, An C, Jin P, Liu X, Wang L. Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials 2013, 34: 817–830.

    Article  CAS  PubMed  Google Scholar 

  41. Pinzon-Daza ML, Campia I, Kopecka J, Garzon R, Ghigo D, Riganti C. Nanoparticle- and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier. Curr Drug Metab 2013, 14: 625–640.

    Article  CAS  PubMed  Google Scholar 

  42. Ding H, Sagar V, Agudelo M, Pilakka-Kanthikeel S, Atluri VS, Raymond A, et al. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology 2014, 25: 055101.

    Article  PubMed  Google Scholar 

  43. Arnold RD, Mager DE, Slack JE, Straubinger RM. Effect of repetitive administration of Doxorubicin-containing liposomes on plasma pharmacokinetics and drug biodistribution in a rat brain tumor model. Clin Cancer Res 2005, 11: 8856–8865.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Artus C, Glacial F, Ganeshamoorthy K, Ziegler N, Godet M, Guilbert T, et al. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J Cereb Blood Flow Metab 2014, 34: 433–440.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Rapoport SI. Effect of concentrat ed solutions on blood-brain barrier. Am J Physiol 1970, 219: 270–274.

    CAS  PubMed  Google Scholar 

  46. Raymond JJ, Robertson DM, Dinsdale HB. Pharmacological modification of bradykinin induced breakdown of the blood-brain barrier. Can J Neurol Sci 1986, 13: 214–220.

    CAS  PubMed  Google Scholar 

  47. Hynynen K, Clement GT, McDannold N, Vykhodtseva N, King R, White PJ, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med 2004, 52: 100–107.

    Article  PubMed  Google Scholar 

  48. Bartus RT, Elliott PJ, Dean RL, Hayward NJ, Nagle TL, Huff MR, et al. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp Neurol 1996, 142: 14–28.

    Article  CAS  PubMed  Google Scholar 

  49. Thomas HD, Lind MJ, Ford J, Bleehen N, Calvert AH, Boddy AV. Pharmacokinetics of carboplatin administered in combination with the bradykinin agonist Cereport (RMP-7) for the treatment of brain tumours. Cancer Chemother Pharmacol 2000, 45: 284–290.

    Article  CAS  PubMed  Google Scholar 

  50. Chen H, Konofagou EE. The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. J Cereb Blood Flow Metab 2014, 34: 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  51. Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev 2014, 72: 94–109.

    Article  CAS  PubMed  Google Scholar 

  52. Cho EE, Drazic J, Ganguly M, Stefanovic B, Hynynen K. Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening. J Cereb Blood Flow Metab 2011, 31: 1852–1862.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Fan CH, Ting CY, Lin HJ, Wang CH, Liu HL, Yen TC, et al. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced braintumor drug delivery. Biomaterials 2013, 34: 3706–3715.

    Article  CAS  PubMed  Google Scholar 

  54. Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY, Yen TC, et al. Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 2012, 33: 704–712.

    Article  CAS  PubMed  Google Scholar 

  55. Wang F, Shi Y, Lu L, Liu L, Cai Y, Zheng H, et al. Targeted delivery of GDNF through the blood-brain barrier by MRI-guided focused ultrasound. PLoS One 2012, 7: e52925.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Huang Q, Deng J, Wang F, Chen S, Liu Y, Wang Z, et al. Targeted gene delivery to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Exp Neurol 2012, 233: 350–356.

    Article  CAS  PubMed  Google Scholar 

  57. Fan CH, Ting CY, Liu HL, Huang CY, Hsieh HY, Yen TC, et al. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 2013, 34: 2142–2155.

    Article  CAS  PubMed  Google Scholar 

  58. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004, 30: 979–989.

    Article  PubMed  Google Scholar 

  59. Carstensen EL, Gracewski S, Dalecki D. These arch for cavitation in vivo. Ultrasound Med Biol 2000, 26: 1377–1385.

    Article  CAS  PubMed  Google Scholar 

  60. Hou GY, Marquet F, Wang S, Konofagou EE. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study. Phys Med Biol 2014, 59: 1121–1145.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Figeac F, Lesault PF, Coz OL, Damy T, Souktani R, Trebeau C, et al. Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells 2014, 32: 216–230..

    Article  CAS  PubMed  Google Scholar 

  62. Gerdes HH, Bukoreshtliev NV, Barroso JF. Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 2007, 581: 2194–2201.

    Article  CAS  PubMed  Google Scholar 

  63. Yasuda K, Khandare A, Burianovskyy L, Maruyama S, Zhang F, Nasjletti A, et al. Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging (Albany NY) 2011, 3: 597–608.

    CAS  Google Scholar 

  64. Lokar M, Kabaso D, Resnik N, Sepcic K, Kralj-Iglic V, Veranic P, et al. The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes. Int J Nanomed 2012, 7: 1891–1902.

    CAS  Google Scholar 

  65. Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med 2013, 11: 94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tosi G, Vilella A, Chhabra R, Schmeisser MJ, Boeckers TM, Ruozi B, et al. Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport. J Control Release 2014, 177: 96–107.

    Article  CAS  PubMed  Google Scholar 

  67. Bukoreshtliev NV, Wang X, Hodneland E, Gurke S, Barroso JF, Gerdes HH. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 2009, 583: 1481–1488.

    Article  CAS  PubMed  Google Scholar 

  68. Callan-Jones A, Sorre B, Bassereau P. Curvature-drive n lipid sorting in biomembranes. Cold Spring Harb Perspect Biol 2011, 3.

  69. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H H. Nanotubular highways for intercellular organelle transport. Science 2004, 303: 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  70. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 2008, 10: 211–219.

    Article  CAS  PubMed  Google Scholar 

  71. Tangl E. Ueber offene communicationen zwischen den Zell en des Endosperms einiger Samen. Jahrb Wiss Botanik 1880, 12: 170–190.

    Google Scholar 

  72. Wang G, Shimada E, Koehler CM, Teitell MA. PNPASE and RN A trafficking into mitochondria. Biochim Biophys Acta 2012, 1819: 998–1007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, et al. PNPASE regulates RNA import into mitochondria. Cell 2010, 142: 456–467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Dong HJ, Shang CZ, Peng DW, Xu J, Xu PX, Zhan L, et al. Curcumin attenuates ischemia-like injury induced IL-1beta elevation in brain microvascular endothelial cells via inhibiting MAPK pathways and nuclear factor-kappaB activation. Neurol Sci 2014, 35: 1387–1392.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyuan Liu or Yangtai Guan.

Additional information

These authors contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, X., Vaughan, W. et al. Novel drug-delivery approaches to the blood-brain barrier. Neurosci. Bull. 31, 257–264 (2015). https://doi.org/10.1007/s12264-014-1498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1498-0

Keywords

Navigation