Skip to main content
Log in

In silico screening and validation of different dehydrogenases to produce 2,3-butanediol in Bacillus subtilis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bacillus subtilis is a natural producer of 2,3-butanediol (2,3-BDO) and has acquired “Generally Regarded as Safe" status. It is reported to produce 2,3-BDO from synthetic sugars as well as complex and economic sugar sources such as molasses. However, the rate-limiting step in the formation of 2,3-BDO is its conversion from acetoin to 2,3-BDO by the enzyme butanediol dehydrogenase (2,3-BDH). Such 2,3-BDHs were screened based on higher affinity (lower Km) towards acetoin as substrate. The in silico docking studies were conducted for further validation, and they showed a high interaction profile for the PpBDH protein towards acetoin. Heterologous expression of these genes was studied in engineered Bacillus subtilis (BS1A1). In this study, it was seen that 2,3-BDH from Paenibacillus polymyxa ZJ-9 was reported to have higher enzyme activity levels, and in the fermentation studies, it was seen that the ratio of 2,3-BDO to acetoin was increased by 80.25%. The insights encourage further bioprocess optimization for increasing the fermentative production of 2,3-BDO. Our results provide a potential strategy to avoid the back conversion of 2,3-BDO to acetoin in an engineered Bacillus system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All the research data generated from this study and the biological data used from NCBI has been mentioned and cited with references in the manuscript.

References

  1. Data Bridge Market Research (2020) Renewable Chemicals Market – Global Industry Trends and Forecast to 2029. https://www.databridgemarketresearch.com/reports/global-renewable-chemicals-market. Accessed: 10 Mar 2022

  2. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol–current state and prospects. Biotechnol Adv 27:715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Białkowska AM (2016) Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32:200. https://doi.org/10.1007/s11274-016-2161-x

    Article  CAS  PubMed  Google Scholar 

  4. Qi G, Kang Y, Li L et al (2014) Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7:16. https://doi.org/10.1186/1754-6834-7-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Białkowska AM, Gromek E, Krysiak J et al (2015) Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. J Ind Microbiol Biotechnol 42:1609–1621. https://doi.org/10.1007/s10295-015-1697-3

    Article  CAS  PubMed  Google Scholar 

  6. Keo-Oudone C, Phommachan K, Suliya O et al (2022) Highly efficient production of 2,3-butanediol from xylose and glucose by newly isolated thermotolerant Cronobacter sakazakii. BMC Microbiol 22:164. https://doi.org/10.1186/s12866-022-02577-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hazeena SH, Sindhu R, Pandey A et al (2020) Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. Bioresour Technol 302:122873. https://doi.org/10.1016/j.biortech.2020.122873

    Article  CAS  PubMed  Google Scholar 

  8. Soltys KA, Batta AK, Koneru B (2001) Successful nonfreezing, subzero preservation of rat liver with 2,3-butanediol and type I antifreeze protein. J Surg Res 96:30–34. https://doi.org/10.1006/jsre.2000.6053

    Article  CAS  PubMed  Google Scholar 

  9. Gräfje H, Körnig W, Weitz HM et al (2000) Butanediols, butenediol, and butynediol. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a04_455

    Article  Google Scholar 

  10. Transparency Market Research (2021) 2,3-Butanediol Market. https://www.transparencymarketresearch.com/2-3-butanediol-market.html. Accessed 3 May 2021

  11. Ma C, Wang A, Qin J et al (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82:49–57. https://doi.org/10.1007/s00253-008-1732-7

    Article  CAS  PubMed  Google Scholar 

  12. Ji XJ, Huang H, Zhu JG et al (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758. https://doi.org/10.1007/s00253-009-2222-2

    Article  CAS  PubMed  Google Scholar 

  13. Huynh DT, Kim AY, Seol IH et al (2015) Inactivation of the virulence factors from 2,3-butanediol-producing Klebsiella pneumoniae. Appl Microbiol Biotechnol 99:9427–9438. https://doi.org/10.1007/s00253-015-6861-1

    Article  CAS  PubMed  Google Scholar 

  14. Indian Council of Agricultural Research Biosafety Portal (2023) Recombinant DNA Safety Guidelines, 1990. https://biosafety.icar.gov.in/recombinant-dna-safety-guidelines-1990-2/. Accessed 26 Oct 2023

  15. Yang Z, Zhang Z (2019) Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnol Adv 37:569–578. https://doi.org/10.1016/j.biotechadv.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  16. Kim SJ, Kim JW, Lee YG et al (2017) Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Appl Microbiol Biotechnol 101:2241–2250. https://doi.org/10.1007/s00253-017-8172-1

    Article  CAS  PubMed  Google Scholar 

  17. Cui W, Han L, Suo F et al (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 34:145. https://doi.org/10.1007/s11274-018-2531-7

    Article  CAS  PubMed  Google Scholar 

  18. Pohl S, Harwood CR (2010) Heterologous protein secretion by bacillus species from the cradle to the grave. Adv Appl Microbiol 73:1–25. https://doi.org/10.1016/S0065-2164(10)73001-X

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Zhao X, Zhang J et al (2017) Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis. Prep Biochem Biotechnol 47:761–767. https://doi.org/10.1080/10826068.2017.1320293

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Oh BR, Lee S et al (2021) Process optimization for mass production of 2,3-butanediol by Bacillus subtilis CS13. Biotechnol Biofuels 14:15. https://doi.org/10.1186/s13068-020-01859-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deshmukh AN, Mistry SR, Yewale TB et al (2015) Production of 2, 3-butanediol from sugarcane molasses using Bacillus subtilis. Int J Adv Biotechnol Res 6:66–79

    Google Scholar 

  22. Maina S, Prabhu AA, Vivek N et al (2022) Prospects on bio-based 2,3-butanediol and acetoin production: recent progress and advances. Biotechnol Adv 54:107783. https://doi.org/10.1016/j.biotechadv.2021.107783

    Article  CAS  PubMed  Google Scholar 

  23. Lee GB, Kim YJ, Lim JK et al (2019) A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1. Appl Microbiol Biotechnol 103:3477–3485. https://doi.org/10.1007/s00253-019-09724-z

    Article  CAS  PubMed  Google Scholar 

  24. Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74:6832–6838. https://doi.org/10.1128/AEM.00881-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang X, Zhang R, Yang T et al (2013) Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase. World J Microbiol Biotechnol 29:1783–1789. https://doi.org/10.1007/s11274-013-1339-8

    Article  CAS  PubMed  Google Scholar 

  26. Hajieghrari B, Farrokhi N, Goliaei B et al (2015) Computational identification, characterization and analysis of conserved miRNAs and their targets in Amborella Trichopoda. J Data Mining Genomics Proteomics 6:168. https://doi.org/10.4172/2153-0602.1000168

    Article  CAS  Google Scholar 

  27. Mirdita M, Schütze K, Moriwaki Y et al (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682. https://doi.org/10.1038/s41592-022-01488-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dundas J, Ouyang Z, Tseng J et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118. https://doi.org/10.1093/nar/gkl282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yende SR, Shah SK, Arora SK et al (2021) In silico prediction of phytoconstituents from Ehretia laevis targeting TNF-α in arthritis. Digit Chin Med 4:180–190. https://doi.org/10.1016/j.dcmed.2021.09.003

    Article  CAS  Google Scholar 

  31. Abdelkader A, Elzemrany AA, El-Nadi M et al (2022) In-silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology 573:96–110. https://doi.org/10.1016/j.virol.2022.06.008

    Article  CAS  PubMed  Google Scholar 

  32. Altuner EM (2022) In silico proof of the effect of quercetin and umbelliferone as alpha-amylase inhibitors, which can be used in the treatment of diabetes. Kastamonu Uni Orman Fakültesi Dergisi 22:202–216. https://doi.org/10.17475/kastorman.1215281

    Article  Google Scholar 

  33. Khaerunnisa S, Kurniawan H, Awaluddin R et al (2020) Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. https://doi.org/10.20944/preprints202003.0226.v1

    Article  Google Scholar 

  34. Wickham H (2016) Data analysis. In: Wickham H (ed) ggplot2, 2nd edn. Springer, Cham

    Chapter  Google Scholar 

  35. Guérout-Fleury AM, Frandsen N, Stragier P (1996) Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57–61. https://doi.org/10.1016/s0378-1119(96)00404-0

    Article  PubMed  Google Scholar 

  36. Vojcic L, Despotovic D, Martinez R et al (2012) An efficient transformation method for Bacillus subtilis DB104. Appl Microbiol Biotechnol 94:487–493. https://doi.org/10.1007/s00253-012-3987-2

    Article  CAS  PubMed  Google Scholar 

  37. Kaltwasser M, Wiegert T, Schumann W (2002) Construction and application of epitope- and green fluorescent protein-tagging integration vectors for Bacillus subtilis. Appl Environ Microbiol 68:2624–2628. https://doi.org/10.1128/AEM.68.5.2624-2628.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang TW, Rao ZM, Zhang X et al (2013) Effects of corn steep liquor on production of 2,3-butanediol and acetoin by Bacillus subtilis. Process Biochem 48:1610–1617. https://doi.org/10.1016/j.procbio.2013.07.027

    Article  CAS  Google Scholar 

  39. Deshmukh AN, Nipanikar-Gokhale P, Jain R (2016) Engineering of Bacillus subtilis for the production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 179:321–331. https://doi.org/10.1007/s12010-016-1996-9

    Article  CAS  PubMed  Google Scholar 

  40. Hamza TA, Hadwan MH (2020) New spectrophotometric method for the assessment of catalase enzyme activity in biological tissues. Curr Anal Chem 16:1054–1062. https://doi.org/10.2174/1573411016666200116091238

    Article  CAS  Google Scholar 

  41. Yan Y, Lee CC, Liao JC (2009) Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7:3914–3917. https://doi.org/10.1039/b913501d

    Article  CAS  PubMed  Google Scholar 

  42. Muschallik L, Molinnus D, Bongaerts J et al (2017) (R, R)-Butane-2,3-diol dehydrogenase from Bacillus clausii DSM 8716T: cloning and expression of the bdhA-gene, and initial characterization of enzyme. J Biotechnol 258:41–50. https://doi.org/10.1016/j.jbiotec.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  43. Gao J, Yang HH, Feng XH et al (2013) A 2,3-butanediol dehydrogenase from Paenibacillus polymyxa ZJ-9 for mainly producing R, R-2,3-butanediol: purification, characterization and cloning. J Basic Microbiol 53:733–741. https://doi.org/10.1002/jobm.201200152

    Article  CAS  PubMed  Google Scholar 

  44. Zhang GL, Wang CW, Li C (2012) Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae. Biotechnol Lett 34:1519–1523. https://doi.org/10.1007/s10529-012-0933-4

    Article  CAS  PubMed  Google Scholar 

  45. Xu GC, Bian YQ, Han RZ et al (2016) Cloning, expression, and characterization of budC gene encoding meso-2,3-butanediol dehydrogenase from Bacillus licheniformis. Appl Biochem Biotechnol 178:604–617. https://doi.org/10.1007/s12010-015-1897-3

    Article  CAS  PubMed  Google Scholar 

  46. Ui S, Okajima Y, Mimura A et al (1997) Sequence analysis of the gene for and characterization of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. J Biosci Bioeng 83:32–37. https://doi.org/10.1016/S0922-338X(97)87323-0

    Article  CAS  Google Scholar 

  47. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Auld DS, Bergman T (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the role of zinc for alcohol dehydrogenase structure and function. Cell Mol Life Sci 65:3961–3970. https://doi.org/10.1007/s00018-008-8593-1

    Article  CAS  PubMed  Google Scholar 

  49. Otagiri M, Ui S, Takusagawa Y et al (2010) Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. FEBS Lett 584:219–223. https://doi.org/10.1016/j.febslet.2009.11.068

    Article  CAS  PubMed  Google Scholar 

  50. Jongeneel CV, Bouvier J, Bairoch A (1989) A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett 242:211–214. https://doi.org/10.1016/0014-5793(89)80471-5

    Article  CAS  PubMed  Google Scholar 

  51. Brettrager EJ, Cuya SM, Tibbs ZE (2023) N-terminal domain of tyrosyl-DNA phosphodiesterase I regulates topoisomerase I-induced toxicity in cells. Sci Rep 13:1377. https://doi.org/10.1038/s41598-023-28564-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cala O, Guillière F, Krimm I (2014) NMR-based analysis of protein-ligand interactions. Anal Bioanal Chem 406:943–956. https://doi.org/10.1007/s00216-013-6931-0

    Article  CAS  PubMed  Google Scholar 

  53. Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41:2644–2676. https://doi.org/10.1002/1521-3773(20020802)41:15%3c2644::AID-ANIE2644%3e3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  54. Rasul HO, Aziz BK, Ghafour DD et al (2021) In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. J Mol Model 28:17. https://doi.org/10.1007/s00894-021-05010-w

    Article  CAS  PubMed  Google Scholar 

  55. Meyer M, Wilson P, Schomburg D (1996) Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. J Mol Biol 264:199–210. https://doi.org/10.1006/jmbi.1996.0634

    Article  CAS  PubMed  Google Scholar 

  56. Mhatre S, Patravale V (2021) Drug repurposing of triazoles against mucormycosis using molecular docking: a short communication. Comput Biol Med 136:104722. https://doi.org/10.1016/j.compbiomed.2021.104722

    Article  CAS  PubMed  Google Scholar 

  57. Kwofie SK, Hanson G, Sasu H et al (2022) Molecular modelling and atomistic insights into the binding mechanism of MmpL3 Mtb. Chem Biodivers 19:e202200160. https://doi.org/10.1002/cbdv.202200160

    Article  CAS  PubMed  Google Scholar 

  58. Persson B, Hedlund J, Jörnvall H (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the MDR superfamily. Cell Mol Life Sci 65:3879–3894. https://doi.org/10.1007/s00018-008-8587-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu J, Wang Z, Chen T et al (2014) NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 111:2126–2131. https://doi.org/10.1002/bit.25265

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, San KY, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 24:994–999. https://doi.org/10.1016/j.copbio.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  61. Bardhan M, Chowdhury J, Ganguly T (2011) Investigations on the interactions of aurintricarboxylic acid with bovine serum albumin: Steady state/time resolved spectroscopic and docking studies. J Photochem Photobiol B 102:11–19. https://doi.org/10.1016/j.jphotobiol.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  62. Tang H, Huang L, Sun C et al (2020) Exploring the structure-activity relationship and interaction mechanism of flavonoids and α-glucosidase based on experimental analysis and molecular docking studies. Food Funct 11:3332–3350. https://doi.org/10.1039/c9fo02806d

    Article  CAS  PubMed  Google Scholar 

  63. Southall NT, Dill KA, Haymet DJ (2002) A view of the hydrophobic effect. J Phys Chem B 106:521–533. https://doi.org/10.1021/jp015514e

    Article  CAS  Google Scholar 

  64. Abdullah SMS, Fatma S, Rabbani G et al (2017) A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin. J Mol Struct 1127:283–288. https://doi.org/10.1016/j.molstruc.2016.07.108

    Article  CAS  Google Scholar 

  65. Yamada R, Wakita K, Mitsui R et al (2017) Efficient production of 2,3-butanediol by recombinant Saccharomyces cerevisiae through modulation of gene expression by cocktail δ-integration. Bioresour Technol 245:1558–1566. https://doi.org/10.1016/j.biortech.2017.05.034

    Article  CAS  PubMed  Google Scholar 

  66. Yang T, Rao Z, Hu G et al (2015) Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnol Biofuels 8:129. https://doi.org/10.1186/s13068-015-0320-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pu Z, Ji F, Wang J et al (2017) Rational design of Meso-2,3-butanediol dehydrogenase by molecular dynamics simulation and experimental evaluations. FEBS Lett 591:3402–3413. https://doi.org/10.1002/1873-3468.12834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Confederation of Indian Industry (CII) and Praj Industries Ltd., Pune, India, for the financial support to Sailee Sanjay Asolkar under the scheme “Prime Minister Fellowship for Doctoral research”. This work was funded by Praj Matrix-R and D Center (Division of Praj Industries Limited), Pune, India.

Author information

Authors and Affiliations

Authors

Contributions

SSA involved in data curation, investigation, methodology, formal analysis, validation, visualization, writing—original draft & editing. AM took part in silico investigation, methodology, formal analysis, validation, visualization, writing—original draft & editing. RK took part in silico investigation, methodology, formal analysis, validation, visualization, writing—review. AD involved in conceptualization, data curation, investigation, methodology, writing—review. AG involved in conceptualization, data curation, investigation, methodology, writing—review. PK involved in funding acquisition, project administration, resources.

Corresponding authors

Correspondence to Anand Ghosalkar or Pramod Kumbhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asolkar, S.S., Anju, M., Kumar, R. et al. In silico screening and validation of different dehydrogenases to produce 2,3-butanediol in Bacillus subtilis. Biotechnol Bioproc E 29, 271–290 (2024). https://doi.org/10.1007/s12257-024-00053-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-024-00053-1

Keywords

Navigation