Skip to main content
Log in

An Aligned Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffold Fixed with Fibronectin to Enhance the Attachment and Growth of Human Endothelial Progenitor Cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Repair and regeneration of vascular tissue is a crucial current research focus in the fields of biomedical engineering and regenerative medicine. Numerous studies revealed that cells are required to grow on an appropriate extracellular matrix to maintain or enhance functionality. In the present study, various surface modification methods were evaluated to fix fibronectin on the surface of a bio-based and aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film for vascular tissue engineering. After chemical modification, the properties of the fibronectin-fixed PHBV films were examined and compared with the original films, including -NH2 group expression, contact angle, mechanical properties, and fibronectin binding amount. Then, cytotoxicity and biocompatibility were measured by culture with L929 cells and endothelial progenitor cells (EPCs) of the fibronectin-fixed PHBV films. In addition, cell morphology, cell growth kinetics, acetylated low-density lipoprotein uptake ability, lectin binding ability and specific gene expressions of cultured EPCs on fibronectin-fixed PHBV films were also analyzed. Taken together, our data demonstrated that the surface of the aligned PHBV films could be successfully modified to immobilize fibronectin. Importantly, EPCs cultured on the fibronectin-fixed PHBV films showed excellent cell biocompatibility, a rapid proliferation rate, an aligned growth direction and correct cell functions. We believed that fibronectin-fixed PHBV films can serve as a potential scaffold for vascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Bakey, M. E. and D. A. Cooley (1954) Successful resection of aneurysm of distal aortic arch and replacement by graft. J. Am. Med. Assoc. 155: 1398–1403.

    Article  CAS  PubMed  Google Scholar 

  2. Chlupáč, J., E. Filová, and L. Bačáková (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol. Res. 58(Suppl 2): S119–S139.

    Article  PubMed  Google Scholar 

  3. Veith, F. J., S. K. Gupta, E. Ascer, S. White-Flores, R. H. Samson, L. A. Scher, J. B. Towne, V. M. Bernhard, P. Bonier, W. R. Flinn, P. Astelford, J. S. T. Yao, and J. J. Bergan (1986) Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J. Vasc. Surg. 3: 104–114.

    Article  CAS  PubMed  Google Scholar 

  4. Aslani, S., M. Kabiri, M. Kehtari, and H. Hanaee-Ahvaz (2019) Vascular tissue engineering: Fabrication and characterization of acetylsalicylic acid-loaded electrospun scaffolds coated with amniotic membrane lysate. J. Cell. Physiol. 234: 16080–16096.

    Article  CAS  PubMed  Google Scholar 

  5. Braghirolli, D. I., V. E. Helfer, P. C. Chagastelles, T. P. Dalberto, D. Gamba, and P. Pranke (2017) Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells. Biomed. Mater. 12: 025003.

    Article  CAS  PubMed  Google Scholar 

  6. Hsia, K., M. J. Yang, W. M. Chen, C. L. Yao, C. H. Lin, C. C. Loong, Y. L. Huang, Y. T. Lin, A. D. Lander, H. Lee, and J. H. Lu (2017) Sphingosine-1-phosphate improves endothelialization with reduction of thrombosis in recellularized human umbilical vein graft by inhibiting syndecan-1 shedding in vitro. Acta Biomater. 51: 341–350.

    Article  CAS  PubMed  Google Scholar 

  7. Serbo, J. V. and S. Gerecht (2013) Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis. Stem Cell Res. Ther. 4: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dahl, S. L. M., A. P. Kypson, J. H. Lawson, J. L. Blum, J. T. Strader, Y. Li, R. J. Manson, W. E. Tente, L. DiBernardo, M. T. Hensley, R. Carter, T. P. Williams, H. L. Prichard, M. S. Dey, K. G. Begelman, and L. E. Niklason (2011) Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 3: 68ra9.

    Article  PubMed  Google Scholar 

  9. Zhang, W. J., W. Liu, L. Cui, and Y. Cao (2007) Tissue engineering of blood vessel. J. Cell. Mol. Med. 11: 945–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shin, Y. M., J.-Y. Lim, J.-S. Park, H.-J. Gwon, S. I. Jeong, and Y.-M. Lim (2014) Radiation-induced biomimetic modification of dual-layered nano/microfibrous scaffolds for vascular tissue engineering. Biotechnol. Bioprocess Eng. 19: 118–125.

    Article  CAS  Google Scholar 

  11. Hoenig, M. R., G. R. Campbell, B. E. Rolfe, and J. H. Campbell (2005) Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler. Thromb. Vasc. Biol. 25: 1128–1134.

    Article  CAS  Google Scholar 

  12. Gong, Z. and L. E. Niklason (2006) Blood vessels engineered from human cells. Trends Cardiovasc. Med. 16: 153–156.

    Article  CAS  PubMed  Google Scholar 

  13. Krause, D. S., N. D. Theise, M. I. Collector, O. Henegariu, S. Hwang, R. Gardner, S. Neutzel, and S. J. Sharkis (2001) Multiorgan, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105: 369–377.

    Article  CAS  PubMed  Google Scholar 

  14. Khoo, C. P., P. Pozzilli, and M. R. Alison (2008) Endothelial progenitor cells and their potential therapeutic applications. Regen. Med. 3: 863–876.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, J., K. Yang, H.-J. Park, S.-W. Cho, S. Han, Y. Shin, S. Chung, and J. H. Lee (2014) Implantable microfluidic device for the formation of three-dimensional vasculature by human endothelial progenitor cells. Biotechnol. Bioprocess Eng. 19: 379–385.

    Article  CAS  Google Scholar 

  16. Rammal, H., C. Harmouch, J. J. Lataillade, D. Laurent-Maquin, P. Labrude, P. Menu, and H. Kerdjoudj (2014) Stem cells: a promising source for vascular regenerative medicine. Stem Cells Dev. 23: 2931–2949.

    Article  CAS  PubMed  Google Scholar 

  17. Paprocka, M., A. Krawczenko, D. Dus, A. Kantor, A. Carreau, C. Grillon, and C. Kieda (2011) CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A 79: 594–602.

    Article  PubMed  Google Scholar 

  18. Duan, H. X., L. M. Cheng, J. Wang, L. S. Hu, and G. X. Lu (2006) Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biol. Int. 30: 1018–1027.

    Article  CAS  PubMed  Google Scholar 

  19. Krenning, G., M. J. van Luyn, and M. C. Harmsen (2009) Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol. Med. 15: 180–189.

    Article  CAS  PubMed  Google Scholar 

  20. Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman, and J. M. Isner (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967.

    Article  CAS  PubMed  Google Scholar 

  21. Janic, B., A. M. Guo, A. S. Iskander, N. R. Varma, A. G. Scicli, and A. S. Arbab (2010) Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS One 5: e9173.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cheng, S. L., C. H. Lin, and C. L. Yao (2017) Mesenchymal stem cell administration in patients with chronic obstructive pulmonary disease: state of the science. Stem Cells Int. 2017: 8916570.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin, K. H., Y. H. Ho, J. C. Chiang, M. W. Li, S. H. Lin, W. M. Chen, C. L. Chiang, Y. N. Lin, Y. J. Yang, C. N. Chen, J. Lu, C. J. Huang, G. Tigyi, C. L. Yao, and H. Lee (2016) Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis. Sci. Rep. 6: 27050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kao, I. T., C. L. Yao, Y. J. Chang, T. B. Hsieh, and S. M. Hwang (2008) Chondrogenic differentiation of human mesenchymal stem cells from umbilical cord blood in chemically synthesized thermoreversible polymer. Chin. J. Physiol. 51: 252–258.

    CAS  PubMed  Google Scholar 

  25. Smadja, D. M., A. Cornet, J. Emmerich, M. Aiach, and P. Gaussem (2007) Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol. Toxicol. 23: 223–239.

    Article  CAS  PubMed  Google Scholar 

  26. Marchand, M., E. K. Anderson, S. M. Phadnis, M. T. Longaker, J. P. Cooke, B. Chen, and R. A. Reijo Pera (2014) Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl. Med. 3: 91–97.

    Article  CAS  PubMed  Google Scholar 

  27. Li, H., R. Du, and J. Chang (2005) Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass. J. Biomater. Appl. 20: 137–155.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, G. Q. and Q. Wu (2005) The application of polyhydroxy-alkanoates as tissue engineering materials. Biomaterials 26: 6565–6578.

    Article  CAS  PubMed  Google Scholar 

  29. Wollenweber, M., H. Domaschke, T. Hanke, S. Boxberger, G. Schmack, K. Gliesche, D. Scharnweber, and H. Worch (2006) Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng. 12: 345–359.

    Article  CAS  PubMed  Google Scholar 

  30. Qu, X. H., Q. Wu, K. Y. Zhang, and G. Q. Chen (2006) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27: 3540–3548.

    CAS  PubMed  Google Scholar 

  31. Li, J., H. Yun, Y. Gong, N. Zhao, and X. Zhang (2005) Effects of surface modification of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) on physicochemical properties and on interactions with MC3T3-E1 cells. J. Biomed. Mater. Res. A 75: 985–998.

    Article  PubMed  Google Scholar 

  32. Qu, X. H., Q. Wu, J. Liang, X. Qu, S. G. Wang, and G. Q. Chen (2005) Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 26: 6991–7001.

    Article  CAS  PubMed  Google Scholar 

  33. Yao, C.-L., J.-H. Chen, and C.-H. Lee (2018) Effects of various monomers and micro-structure of polyhydroxyalkanoates on the behavior of endothelial progenitor cells and endothelial cells for vascular tissue engineering. J. Polym. Res. 25: 187.

    Article  Google Scholar 

  34. Frantz, C., K. M. Stewart, and V. M. Weaver (2010) The extracellular matrix at a glance. J. Cell Sci. 123: 4195–4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shen, Z., C. Kang, J. Chen, D. Ye, S. Qiu, S. Guo, and Y. Zhu (2013) Surface modification of polyurethane towards promoting the ex vivo cytocompatibility and in vivo biocompatibility for hypopharyngeal tissue engineering. J. Biomater. Appl. 28: 607–616. (Erratum published 2014, J. Biomater. Appl. 28: 798)

    Article  CAS  PubMed  Google Scholar 

  36. Chang, K. Y., L. H. Hung, I. M. Chu, C. S. Ko, and Y. D. Lee (2010) The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. J. Biomed. Mater. Res. A 92: 712–723.

    Article  PubMed  Google Scholar 

  37. García-García, J. M., I. Quijada-Garrido, L. López, R. París, M. T. Núñez-López, E. de la Peña Zarzuelo, and L. Garrido (2013) The surface modification of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers to improve the attachment of urothelial cells. Mater. Sci. Eng. C Mater. Biol. Appl. 33: 362–369.

    Article  PubMed  Google Scholar 

  38. Hinüber, C., K. Chwalek, F. J. Pan-Montojo, M. Nitschke, R. Vogel, H. Brünig, G. Heinrich, and C. Werner (2014) Hierarchically structured nerve guidance channels based on poly-3-hydroxybutyrate enhance oriented axonal outgrowth. Acta Biomater. 10: 2086–2095.

    Article  PubMed  Google Scholar 

  39. Wang, L.-Y., Y.-J. Wang, and D.-R. Cao (2009) Surface modification of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membrane by combining surface aminolysis treatment with collagen immobilization. J. Macromol. Sci. Part A-Pure Appl. Chem. 46: 765–773.

    Article  CAS  Google Scholar 

  40. Hsu, S. H., T. T. Ho, N. C. Huang, C. L. Yao, L. H. Peng, and N. T. Dai (2014) Substrate-dependent modulation of 3D spheroid morphology self-assembled in mesenchymal stem cell-endothelial progenitor cell coculture. Biomaterials 35: 7295–7307.

    Article  CAS  PubMed  Google Scholar 

  41. Lai, C.-C., M.-Y. Chung, and C.-T. Lo (2017) Nitric acid oxidation of electrospun carbon nanofibers as supercapacitor electrodes. Text. Res. J. 87: 2337–2348.

    Article  CAS  Google Scholar 

  42. Hsia, K., C. L. Yao, W. M. Chen, J. H. Chen, H. Lee, and J. H. Lu (2016) Scaffolds and cell-based tissue engineering for blood vessel therapy. Cells Tissues Organs 202: 281–295.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan, Republic of China (MOST 108-2628-E-006-009-MY3) and Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, Republic of China (PTH111033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ling Yao.

Ethics declarations

The authors declare no conflicts of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CN., Lin, YT., Chen, YH. et al. An Aligned Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffold Fixed with Fibronectin to Enhance the Attachment and Growth of Human Endothelial Progenitor Cells. Biotechnol Bioproc E 28, 428–438 (2023). https://doi.org/10.1007/s12257-022-0255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0255-x

Keywords

Navigation