Skip to main content
Log in

Inhibition of Cyclopropane Fatty Acid Synthesis in the Membrane of Halophilic Halomonas socia CKY01 by Kanamycin

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2022

This article has been updated

Abstract

Antibiotics are powerful and reliable substances that can control microorganism growth. However, microbes employ several countermeasures to adapt to external stresses such as extreme salt concentrations and antibiotics. Among them, microbes can regulate the fatty acid composition of their cell membrane. Our previous study reported that Halomonas socia CKY01, a various hydrolase producing halophilic bacterium, exhibited NaCl concentration-dependent kanamycin resistance. In this study, kanamycin, which is known to interfere with protein synthesis by targeting bacterial ribosomes, was unexpectedly found to inhibit cyclopropane fatty acid (CFA) synthesis in the cell membrane of this microbe. As a result, the aim of the current study was to elucidate the mechanism underlying this unique function of kanamycin. Reverse transcription-polymerase chain reaction was used to examine cfa expression, which encodes cyclopropane-fatty acid-acyl-phospholipid synthase, and it was found that the mRNA expression of cfa was not significantly affected by kanamycin treatment. Inhibition of CFA production was also observed when oleic acid, a CFA precursor, was supplied to cells. Additionally, inhibition of CFA synthase was monitored in cfa-overexpressing Escherichia coli, and CFA production did not differ significantly, suggesting that this phenomenon is specific to H. socia CKY01. Although the exact mechanism of CFA inhibition by kanamycin remains unclear, the study findings demonstrate the impact of kanamycin on the cell membrane composition of H. socia CKY01, suggesting possible synergetic effects with membrane-targeted antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Park, Y. L., T. R. Choi, Y. H. Han, H. S. Song, J. Y. Park, S. K. Bhatia, R. Gurav, K. Y. Choi, Y. G. Kim, and Y. H. Yang (2020) Effects of osmolytes on salt resistance of Halomonas socia CKY01 and identification of osmolytes-related genes by genome sequencing. J. Biotechnol. 322: 21–28.

    Article  CAS  Google Scholar 

  2. Ghazaei, C. (2017) Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens. J. Med. Microbiol. 66: 259–265.

    Article  CAS  Google Scholar 

  3. Burg, M. B. and J. D. Ferraris (2008) Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283: 7309–7313.

    Article  CAS  Google Scholar 

  4. Giuliodori, A. M., C. O. Gualerzi, S. Soto, J. Vila, and M. M. Tavío (2007) Review on bacterial stress topics. Ann. N. Y. Acad. Sci. 1113: 95–104.

    Article  CAS  Google Scholar 

  5. Cronan, J. E., Jr., R. Reed, F. R. Taylor, and M. B. Jackson (1979) Properties and biosynthesis of cyclopropane fatty acids in Escherichia coli. J. Bacteriol. 138: 118–121.

    Article  CAS  Google Scholar 

  6. Schweizer, H. P. (2004) Fatty acid biosynthesis and biologically significant acyl transfer reactions in pseudomonads. pp. 83–109. In: J.-L. Ramos (ed.). Pseudomonas. Springer, Boston, MA, USA.

    Chapter  Google Scholar 

  7. Choi, T.-R., H.-S. Song, Y.-H. Han, Y.-L. Park, J. Y. Park, S.-Y. Yang, S. K. Bhatia, R. Gurav, H. J. Kim, Y. K. Lee, K. Y. Choi, and Y.-H. Yang (2020) Enhanced tolerance to inhibitors of Escherichia coli by heterologous expression of cyclopropane-fatty acid-acyl-phospholipid synthase (cfa) from Halomonas socia. Bioprocess Biosyst. Eng. 43: 909–918.

    Article  CAS  Google Scholar 

  8. Taylor, F. R. and J. E. Cronan Jr. (1979) Cyclopropane fatty acid synthase of Escherichia coli. Stabilization, purification, and interaction with phospholipid vesicles. Biochemistry 18: 3292–3300.

    Article  CAS  Google Scholar 

  9. Wang, A. Y., D. W. Grogan, and J. E. Cronan Jr. (1992) Cyclopropane fatty acid synthase of Escherichia coli: deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry 31: 11020–11028.

    Article  CAS  Google Scholar 

  10. Loffhagen, N., C. Härtig, W. Geyer, M. Voyevoda, and H. Harms (2007) Competition between cis, trans and cyclopropane fatty acid formation and its impact on membrane fluidity. Eng. Life Sci. 7: 67–74.

    Article  CAS  Google Scholar 

  11. Kuchta, T. and N. J. Russell (1994) Glycinebetaine stimulates, but NaCl inhibits, fatty acid biosynthesis in the moderately halophilic eubacterium HX. Arch. Microbiol. 161: 234–238.

    Article  CAS  Google Scholar 

  12. Smittle, R. B., S. E. Gilliland, M. L. Speck, and W. M. Walter Jr. (1974) Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen. Appl. Microbiol. 27: 738–743.

    Article  CAS  Google Scholar 

  13. Yumoto, I., K. Hirota, H. Iwata, M. Akutsu, K. Kusumoto, N. Morita, Y. Ezura, H. Okuyama, and H. Matsuyama (2004) Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Arch. Microbiol. 181: 345–351.

    Article  CAS  Google Scholar 

  14. Annous, B. A., M. F. Kozempel, and M. J. Kurantz (1999) Changes in membrane fatty acid composition of Pediococcus sp. strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance. Appl. Environ. Microbiol. 65: 2857–2862.

    Article  CAS  Google Scholar 

  15. Pini, C. V., P. Bernal, P. Godoy, J. L. Ramos, and A. Segura (2009) Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT-T1E. Microb. Biotechnol. 2: 253–261.

    Article  CAS  Google Scholar 

  16. Chang, Y. Y. and J. E. Cronan Jr. (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 33: 249–259.

    Article  CAS  Google Scholar 

  17. Zhao, Y., L. A. Hindorff, A. Chuang, M. Monroe-Augustus, M. Lyristis, M. L. Harrison, F. B. Rudolph, and G. N. Bennett (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 69: 2831–2841.

    Article  CAS  Google Scholar 

  18. Choi, T.-R., Y.-L. Park, H.-S. Song, S. M. Lee, S. L. Park, H. S. Lee, H.-J. Kim, S. K. Bhatia, R. Gurav, Y. K. Lee, C. Sung, and Y.-H. Yang (2020) Effects of a Δ-9-fatty acid desaturase and a cyclopropane-fatty acid synthase from the novel psychrophile Pseudomonas sp. B14-6 on bacterial membrane properties. J. Ind. Microbiol. Biotechnol. 47: 1045–1057.

    Article  CAS  Google Scholar 

  19. Arahal, D. R., R. H. Vreeland, C. D. Litchfield, M. R. Mormile, B. J. Tindall, A. Oren, V. Bejar, E. Quesada, and A. Ventosa (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int. J. Syst. Evol. Microbiol. 57: 2436–2446. (Erratum published 2008, Int. J. Syst. Evol. Microbiol. 58: 2673)

    Article  CAS  Google Scholar 

  20. Argandoña, M., C. Vargas, M. Reina-Bueno, J. Rodríguez-Moya, M. Salvador, and J. J. Nieto (2012) An extended suite of genetic tools for use in bacteria of the Halomonadaceae: an overview. Methods Mol. Biol. 824: 167–201.

    Article  Google Scholar 

  21. Park, Y.-L., S. K. Bhatia, R. Gurav, T.-R. Choi, H. J. Kim, H.-S. Song, J.-Y. Park, Y.-H. Han, S. M. Lee, S. L. Park, H. S. Lee, Y.-G. Kim, and Y.-H. Yang (2020) Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int. J. Biol. Macromol. 154: 929–936.

    Article  CAS  Google Scholar 

  22. Park, Y.-L., H.-S. Song, T.-R. Choi, S. M. Lee, S. L. Park, H. S. Lee, H.-J. Kim, S. K. Bhatia, R. Gurav, K. Park, and Y.-H. Yang (2021) Revealing of sugar utilization systems in Halomonas sp. YLGW01 and application for poly(3-hydroxybutyrate) production with low-cost medium and easy recovery. Int. J. Biol. Macromol. 167: 151–159.

    Article  CAS  Google Scholar 

  23. Park, Y.-L., T.-R. Choi, H. J. Kim, H.-S. Song, H. S. Lee, S. L. Park, S. M. Lee, S. H. Kim, S. Park, S. K. Bhatia, R. Gurav, C. Sung, S.-O. Seo, and Y.-H. Yang (2021) NaCl concentration-dependent aminoglycoside resistance of Halomonas socia CKY01 and identification of related genes. J. Microbiol. Biotechnol. 31: 250–258.

    Article  CAS  Google Scholar 

  24. Aston, J. E. and B. M. Peyton (2007) Response of Halomonas campisalis to saline stress: changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition. FEMS Microbiol. Lett. 274: 196–203.

    Article  CAS  Google Scholar 

  25. Suzuki, J., T. Kunimoto, and M. Hori (1970) Effects of kanamycin on protein synthesis: inhibition of elongation of peptide chains. J. Antibiot. (Tokyo) 23: 99–101.

    Article  CAS  Google Scholar 

  26. Bligh, E. G. and W. J. Dyer (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Article  CAS  Google Scholar 

  27. Buyer, J. S. and M. Sasser (2012) High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61: 127–130.

    Article  Google Scholar 

  28. Lee, H. S., H.-S. Song, H.-J. Lee, S. H. Kim, M. J. Suh, J. Y. Cho, S. Ham, Y.-G. Kim, H.-S. Joo, W. Kim, S. H. Lee, D. Yoo, S. K. Bhatia, and Y.-H. Yang (2021) Comparative study of the difference in behavior of the accessory gene regulator (Agr) in USA300 and USA400 community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). J. Microbiol. Biotechnol. 31: 1060–1068.

    Article  CAS  Google Scholar 

  29. Song, H.-S., T.-R. Choi, Y.-H. Han, Y.-L. Park, J. Y. Park, S.-Y. Yang, S. K. Bhatia, R. Gurav, Y.-G. Kim, J.-S. Kim, H.-S. Joo, and Y.-H. Yang (2020) Increased resistance of a methicillin-resistant Staphylococcus aureus Δagr mutant with modified control in fatty acid metabolism. AMB Express 10: 64.

    Article  CAS  Google Scholar 

  30. Song, H.-S., S. K. Bhatia, T.-R. Choi, R. Gurav, H. J. Kim, S. M. Lee, S. L. Park, H. S. Lee, H.-S. Joo, W. Kim, S.-O. Seo, and Y.-H. Yang (2021) Increased antibiotic resistance of methicillin-resistant Staphylococcus aureus USA300 Δpsm mutants and a complementation study of Δpsm mutants using synthetic phenol-soluble modulins. J. Microbiol. Biotechnol. 31: 115–122.

    Article  CAS  Google Scholar 

  31. Choi, T.-R., J.-M. Jeon, S. K. Bhatia, R. Gurav, Y. H. Han, Y. L. Park, J.-Y. Park, H.-S. Song, H. Y. Park, J.-J. Yoon, S.-O. Seo, and Y.-H. Yang (2020) Production of low molecular weight P(3HB-co-3HV) by butyrateacetoacetate CoA-transferase (cftAB) in Escherichia coli. Biotechnol. Bioprocess Eng. 25: 279–286.

    Article  CAS  Google Scholar 

  32. Royce, L. A., P. Liu, M. J. Stebbins, B. C. Hanson, and L. R. Jarboe (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl. Microbiol. Biotechnol. 97: 8317–8327.

    Article  CAS  Google Scholar 

  33. Lee, S. M., H.-J. Lee, S. H. Kim, M. J. Suh, J. Y. Cho, S. Ham, R. Gurav, S. H. Lee, S. K. Bhatia, and Y.-H. Yang (2022) Selective recovery of L-pipecolic acid from L-lysine bioconversion mixture by liquid-liquid extraction. Biotechnol. Bioprocess Eng. 27: 286–293.

    Article  CAS  Google Scholar 

  34. Mykytczuk, N. C., J. T. Trevors, L. G. Leduc, and G. D. Ferroni (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog. Biophys. Mol. Biol. 95: 60–82.

    Article  CAS  Google Scholar 

  35. Han, Y.-H., T.-R. Choi, Y.-L. Park, J. Y. Park, H.-S. Song, H. J. Kim, S. M. Lee, S. L. Park, H. S. Lee, S. K. Bhatia, R. Gurav, and Y.-H. Yang (2020) Enhancement of pipecolic acid production by the expression of multiple lysine cyclodeaminase in the Escherichia coli whole-cell system. Enzyme Microb. Technol. 140: 109643.

    Article  CAS  Google Scholar 

  36. Yang, S.-Y., T.-R. Choi, H.-R. Jung, Y.-L. Park, Y.-H. Han, H.-S. Song, S. K. Bhatia, K. Park, J.-O. Ahn, W.-Y. Jeon, J.-S. Kim, and Y.-H. Yang (2019) Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol. Enzyme Microb. Technol. 128: 72–78.

    Article  CAS  Google Scholar 

  37. Hong, Y.-G., Y.-M. Moon, J.-W. Hong, S.-Y. No, T.-R. Choi, H.-R. Jung, S.-Y. Yang, S. K. Bhatia, J.-O. Ahn, K.-M. Park, and Y.-H. Yang (2018) Production of glutaric acid from 5-aminovaleric acid using Escherichia coli whole cell bio-catalyst overexpressing GabTD from Bacillus subtilis. Enzyme Microb. Technol. 118: 57–65.

    Article  CAS  Google Scholar 

  38. Kim, J., H.-M. Seo, S. K. Bhatia, H.-S. Song, J.-H. Kim, J.-M. Jeon, K.-Y. Choi, W. Kim, J.-J. Yoon, Y.-G. Kim, and Y.-H. Yang (2017) Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci. Rep. 7: 39768.

    Article  CAS  Google Scholar 

  39. Jiang, X., Y. Duan, B. Zhou, Q. Guo, H. Wang, X. Hang, L. Zeng, J. Jia, and H. Bi (2019) The cyclopropane fatty acid synthase mediates antibiotic resistance and gastric colonization of Helicobacter pylori. J. Bacteriol. 201: e00374–19.

    Article  CAS  Google Scholar 

  40. Liu, Q., M. Li, Y. Teng, H. Yang, Y. Xi, S. Chen, and G. Duan (2019) The role of cfa gene in ampicillin tolerance in Shigella. Infect. Drug Resist. 12: 2765–2774.

    Article  Google Scholar 

  41. Guianvarc’h, D., E. Guangqi, T. Drujon, C. Rey, Q. Wang, and O. Ploux (2008) Identification of inhibitors of the E. coli cyclopropane fatty acid synthase from the screening of a chemical library: in vitro and in vivo studies. Biochim. Biophys. Acta 1784: 1652–1658.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Program to solve social issues with the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (grant number 2017M3A9E4077234), National Research Foundation of Korea (NRF) (grant numbers NRF-2022 R1A2C2003138 and NRF-2019M3E6A1103979). W.K. was supported by the National Research Foundation of Korea (NRF) Grant (2020R1C1C1008842, 2018R1A5A2025286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Hun Yang.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.S., Lee, HJ., Kim, B. et al. Inhibition of Cyclopropane Fatty Acid Synthesis in the Membrane of Halophilic Halomonas socia CKY01 by Kanamycin. Biotechnol Bioproc E 27, 788–796 (2022). https://doi.org/10.1007/s12257-022-0086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0086-9

Keywords

Navigation