Skip to main content

An Extended Suite of Genetic Tools for Use in Bacteria of the Halomonadaceae: An Overview

  • Protocol
  • First Online:
Recombinant Gene Expression

Abstract

Halophilic gammaproteobacteria of the family Halomonadaceae (including the genera Aidingimonas, Carnimonas, Chromohalobacter, Cobetia, Halomonas, Halotalea, Kushneria, Modicisalibacter, Salinicola, and Zymobacter) have current and promising applications in biotechnology mainly as a source of compatible solutes (powerful stabilizers of biomolecules and cells, with exciting potentialities in biomedicine), salt-tolerant enzymes, biosurfactants, and extracellular polysaccharides, among other products. In addition, they display a number of advantages to be used as cell factories, alternative to conventional prokaryotic hosts like Escherichia coli or Bacillus, for the production of recombinant proteins: (1) their high salt tolerance decreases to a minimum the necessity for aseptic conditions, resulting in cost-reducing conditions, (2) they are very easy to grow and maintain in the laboratory, and their nutritional requirements are simple, and (3) the majority can use a large range of compounds as a sole carbon and energy source. In the last 15 years, the efforts of our group and others have made possible the genetic manipulation of this bacterial group. In this review, the most relevant and recent tools for their genetic manipulation are described, with emphasis on nucleic acid isolation procedures, cloning and expression vectors, genetic exchange mechanisms, mutagenesis approaches, reporter genes, and genetic expression analyses. Complementary sections describing the influence of salinity on the susceptibility of these bacteria to antimicrobials, as well as the growth media most routinely used and culture conditions, for these microorganisms, are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ventosa, A., Nieto, J. J., and Oren, A. (1998) Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544.

    PubMed  CAS  Google Scholar 

  2. Vargas, C., Argandoña, M., Reina-Bueno, M., et al., (2008). Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Systems 4, 14.

    Article  PubMed  Google Scholar 

  3. Argandoña, M., Nieto, J.J., Iglesias-Guerra, F., et al., (2010). Interplay between iron homeostasis and the osmotic stress response in the halophilic bacterium Chromohalobacter salexigens. Appl. Environ. Microbiol. 76, 3575–3589.

    Article  PubMed  Google Scholar 

  4. De la Haba, R.R., Arahal, D.R., Márquez, M.C., et al., (2010). Phylogenetic relationships within the family Halomonadaceae based on 23S and 16S rRNA gene sequence analysis. Int. J. Syst. Evol. Microbiol. 60 , 737748.

    Article  PubMed  Google Scholar 

  5. Arahal, D.R., Ludwig, W., Schleiffer, K.H., et al., (2002). Phylogeny of the family Halomonadaceae based on 23S and 16S rRNA sequence analyses. Int. J. Syst. Evol. Microbiol. 52 , 241249.

    PubMed  CAS  Google Scholar 

  6. Ventosa, A. and Nieto, J.J. (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol. 11, 85–94.

    Article  CAS  Google Scholar 

  7. Margesin, R. and Schinner, F. (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83.

    Article  PubMed  CAS  Google Scholar 

  8. Da Costa, M. S., Santos, H., and Galinski, E. A. (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol. 61, 117–153.

    PubMed  Google Scholar 

  9. Roberts, M.F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1, 5.

    Article  PubMed  Google Scholar 

  10. Pastor, J.M., Salvador, M., Argandoña, M., et al., (2010). Ectoines in cell stress protection: uses and biotechnological production. Biotechnol. Adv. 28, 782–801.

    Article  PubMed  CAS  Google Scholar 

  11. Afendra, A.S., Vargas, C., Nieto, J.J., and Drainas, C. (2004). Gene transfer and expression of recombinant proteins in moderately halophilic bacteria. In Methods in Molecular Biology, vol. 267: Recombinant Gene Expression: Reviews and Protocols, 2nd ed. P. Balbás and A. Lorence (eds), pp. 209–223. Humana Press Inc., Totowa, NJ.

    Google Scholar 

  12. Arvanitis, N., Vargas, C., Tegos, G., et al., (1995) Development of a gene reporter system in moderately halophilic bacteria by employing the ice nucleation gene of Pseudomonas syringae. Appl. Environ. Microbiol. 61, 3821–3825.

    PubMed  CAS  Google Scholar 

  13. Tegos, G., Vargas, C., Perysinakis, A., et al., (2000) Release of cell-free ice nuclei from Halomonas elongata expressing the ice nucleation gene inaZ of Pseudomonas syringae. J. Appl. Microbiol. 89, 785–792.

    Article  PubMed  CAS  Google Scholar 

  14. Frillingos, S., Linden, A., Niehaus, F., et al., (2000) Cloning and expression of α-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. J. Appl. Microbiol. 88, 495–503.

    Article  PubMed  CAS  Google Scholar 

  15. Nieto, J. J., Fernández-Castillo, R., Márquez, M. C., et al., (1989) A survey of metal tolerance in moderately halophilic eubacteria. Appl. Environ. Microbiol. 55, 2385–2390.

    PubMed  CAS  Google Scholar 

  16. Rodríguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 7, 235–243.

    Article  Google Scholar 

  17. Vreeland, R. H., Anderson, R., and Murray, R.G.E. (1984) Cell wall and phospholipid composition and their contribution to the salt tolerance of Halomonas elongata. J. Bacteriol. 160, 879883.

    PubMed  CAS  Google Scholar 

  18. James, S. R., Dobson, S. J., Franzmann, P. D., et al., (1990) Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antartic saline lakes. Syst. Appl. Microbiol. 13, 270–278.

    Article  Google Scholar 

  19. Severin, J., Wohlfarth, A., and Galinski, E. A. (1992) The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J. Gen. Microbiol. 138, 1629–1638.

    Article  CAS  Google Scholar 

  20. Argandoña, M., Martínez-Checa, F., Llamas, I., et al., (2003). Megaplasmids in Gram-negative, moderately halophilic bacteria. FEMS Microbiol. Lett. 227, 8186.

    Article  PubMed  Google Scholar 

  21. Yanase, H., Sato, D., Yamamoto, K., et al., (2007). Genetic engineering of Zymobacter palmae for production of ethanol from xylose. Appl. Environ. Microbiol. 73, 25922599.

    Article  PubMed  CAS  Google Scholar 

  22. Yanase, H., Yamamoto, K., Sato, D., et al., (2005). Ethanol production from cellobiose by Zymobacter palmae carrying the Ruminocuccus albus beta-glucosidase gene. J. Biotechnol. 118, 35–43.

    Google Scholar 

  23. Joshi, A.A., Kanekar, P.P., Kelkar, A.S., et al.,(2007). Moderately halophilic, alkalitolerant Halomonas campisalis MCM B-365 from Lonar Lake, India. J. Basic Microbiol. 47, 213–221.

    Article  CAS  Google Scholar 

  24. Mwirichia, R., Muigai, A.W., Tindall, B., et al., (2010). Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 14, 339–348.

    Article  PubMed  Google Scholar 

  25. Cohen, G. N. and Rickenberg, R. H. (1956). Concentration specifique reversible des amino-acides chez E. coli. Ann. Ins. Pasteur Paris 91, 693720.

    CAS  Google Scholar 

  26. Kamekura, M., Wallace, R., Hipkiss, A. R., et al., (1985) Growth of Vibrio costicola and other moderate halophiles in a chemically defined minimal medium. Can. J. Microbiol. 31, 870–872.

    Article  PubMed  CAS  Google Scholar 

  27. Cummings, E. P. and Gilmour, D. J. (1995) The effect of NaCl on the growth of a Halomonas species: accumulation and utilization of compatible solutes. Microbiology 141, 1413–1418.

    Article  CAS  Google Scholar 

  28. Nieto, J. J., Fernández-Castillo, R., García, M. T., et al., (1993) Survey of antimicrobial susceptibility of moderately halophilic eubacteria and extremely halophilic aerobic archaeobacteria: utilization of antimicrobial resistance as a genetic marker. Syst. Appl. Microbiol. 16, 352–360.

    Article  CAS  Google Scholar 

  29. Kunte, H. J. and Galinski, E. A. (1995) Transposon mutagenesis in halophilic eubacteria: conjugal transfer and insertion on transposon Tn5 and Tn1732 in Halomonas elongata. FEMS Microbiol. Let. 128, 293–299.

    Article  CAS  Google Scholar 

  30. Coronado, M. J., Vargas, C., Kunte, H. J. et al., (1995) Influence of salt concentration on the susceptibility of moderately halophilic bacteria to antimicrobials and its potential use for genetic transfer studies. Curr. Microbiol. 31, 365–371.

    Article  PubMed  CAS  Google Scholar 

  31. Morelle, G. (1989) A plasmid extraction procedure on a miniprep scale. BRL Focus 11, 7–8.

    Google Scholar 

  32. Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3 rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  33. Plazinski, J., Cen, Y. H., and Rolfe, B. G. (1985) General method for the identification of plasmid species in fast-growing soil micro­organisms. Appl. Environ. Microbiol. 48, 1001–1003.

    Google Scholar 

  34. Wheatcroft, R., McRae, D.G. and Miller, R.W. (1990) Changes in the Rhizobium meliloti genome and the ability to detect supercoiled plasmids during bacteroid development. Mol. Plant Microbe Interact. 3, 9–17.

    Article  CAS  Google Scholar 

  35. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1989). Current Protocols in Molecular Biology. Greene Publishing Associates, John Wiley & Sons, NY.

    Google Scholar 

  36. Marmur, J. (1961) A procedure for the isolation of deoxyribonucleic acid from microorganism. J. Mol. Biol. 3, 208–218.

    Article  CAS  Google Scholar 

  37. Salser, W., Gesteland, R.F. and Bolle, A. (1967) In vitro synthesis of bacteriophague lisozyme. Nature 215, 588–591.

    Article  PubMed  CAS  Google Scholar 

  38. Monsalve, M., Mencía, M., Rojo, F., et al., (1995) Transcriptional regulation in bacteriophague phi 29: expression of the viral promoters throughout in the infection cycle. Virology 207, 23–31.

    Article  PubMed  CAS  Google Scholar 

  39. Calderón, M.I., Vargas, C., Rojo, F., et al., (2004) Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043 T. Microbiology 150, 3051–3063.

    Article  PubMed  Google Scholar 

  40. Edmonds, M., and Caramela, M.G. (1969) The isolation and characterization of adenosine monophosphate-rich polynucleotides synthesized by Ehrlich ascites cells. J. Biol. Chem. 244, 1314–1324.

    PubMed  CAS  Google Scholar 

  41. Kraegeloh, A., Amendt, B., and Kunte H,J. (2005) Potassium transport in a halophilic member of the bacteria domain: identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581 T. J. Bacteriol. 187 , 10361043.

    Google Scholar 

  42. Schweikhard, E.S., Kuhlmann, S.I., Kunte, H.J., et al., (2010) Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of Halomonas elongata DSM 2581(T). Biochemistry 49, 2194–204.

    Article  PubMed  CAS  Google Scholar 

  43. Arco, Y., Llamas, I., Martínez-Checa, F., et al., (2005) epsABCJ genes are involved in the biosynthesis of the exopolysaccharide mauran produced by Halomonas maura. Microbiology 151, 2841–51.

    Article  PubMed  CAS  Google Scholar 

  44. Argandoña, M., Martínez-Checa, F., Llamas, I., et al., (2006) A membrane-bound nitrate reductase encoded by the narGHJI operon is responsible for anaerobic respiration in Halomonas maura. Extremophiles 10, 411–419.

    Article  PubMed  Google Scholar 

  45. Fernández-Castillo, R., Vargas, C., Nieto, J. J, et al., (1992) Characterization of a plasmid from moderately halophilic eubacteria. J. Gen. Microbiol. 138, 1133–1137.

    Article  PubMed  Google Scholar 

  46. Eckhardt, T. (1978) A rapid method for the identification of plasmid DNA in bacteria. Plasmid 1, 584–588.

    Article  PubMed  CAS  Google Scholar 

  47. Vargas, C., Férnandez-Castillo, R., Cánovas, D., et al., (1995) Isolation of cryptic plasmids from moderately halophilic eubacteria of the genus Halomonas. Characterization of a small plasmid from H. elongata and its use for shuttle vector construction. Mol. Gen. Genet. 246, 411–418.

    CAS  Google Scholar 

  48. Vargas, C., Tegos, G., Drainas, C., et al., (1999) Analysis of the replication region of the cryptic plasmid pHE1 from the moderate halophile Halomonas elongata. Mol. Gen. Genet. 261, 851–861.

    Article  PubMed  CAS  Google Scholar 

  49. Vargas, C., Tegos, G., Vartholomatos, G., et al., (1999) Genetic organization of the mobilization region of the plasmid pHE1 from Halomonas elongata. Syst. Appl. Microbiol. 22, 520–529.

    Article  PubMed  CAS  Google Scholar 

  50. Mellado, E., Asturias, M.A., Nieto, J. J., et al., (1995) Characterization of the basic replicon of pCM1, a narrow-host-range plasmid from the moderate halophile Chromohalobacter marismortui. J. Bacteriol. 177, 3433–3445.

    Google Scholar 

  51. Llamas, I., Del Moral, A., Béjar, V., et al., (1997) Plasmids from Halomonas eurihalina, a microorganism which produces an exoplysaccharide of biotechnological interest. FEMS Microbiol. Lett. 156, 251–257.

    Article  CAS  Google Scholar 

  52. Osman, O., Tanguichi, H., Ikeda, K., et al., (2010) Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt. J. Appl. Microbiol. 108, 14597140.

    Article  CAS  Google Scholar 

  53. Mellado, E., Nieto, J.J., and Ventosa, A. (1995) Construction of novel shuttle vectors for use between moderately halophilic bacteria and Escherichia coli. Plasmid 34, 157–164.

    Article  PubMed  CAS  Google Scholar 

  54. Vargas, C., Coronado, M. J., Ventosa, A., et al., (1997) Host range, stability and compatibility of broad-host-range plasmids and a shuttle vector in moderately halophilic bacteria. Evidence of intragenic and intergenic conjugation in moderate halophiles. Syst. Appl. Microbiol. 20, 173–181.

    Google Scholar 

  55. Knauf, V. C. and Nester, E. W. (1982) Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8, 45–54.

    Article  PubMed  CAS  Google Scholar 

  56. Spaink, H. P., Okker, R. J. H., Wiffelman, C. A., et al., (1987). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRLJI. Plant Mol. Biol. 9, 27–39.

    Article  CAS  Google Scholar 

  57. Bagdasariam, M., Lurz, R., Rückert, B., et al., (1981) Specific purpose plasmid cloning vectors, II. Broad-host-range, high-copy-number RSF 1010-derived vectors and host-vector system for gene cloning in Pseudomonas. Gene 16, 237–247.

    Article  Google Scholar 

  58. Labes, M., Pühler, A., and Simon, R. (1990). A new family of RSF1010-derived expression and lac-fussion broad-host-range vectors for Gram-negative bacteria. Gene 89, 37–46.

    Article  PubMed  CAS  Google Scholar 

  59. Leemans, J., Langenakens, J., De Greve, H., et al., (1982). Broad-host-range cloning vectors derived from the W-plasmid Sa. Gene 19, 361–364.

    Article  PubMed  CAS  Google Scholar 

  60. Seaman, P. F., and Day, M. J. (2007) Isolation and characterization of a bacteriophage with an unusually large genome from the Great Salt Plains National Wild life Refuge, Oklahoma, USA. FEMS Microbiol. Ecol. 60, 1–13

    Article  CAS  Google Scholar 

  61. Ryu, H. J., Jeong, Y. J., and Park, D. H. (2004) Growth and physiological properties of wild type and mutants of Halomonas subglaciescola DH-1 in saline environment. J. Microbiol. 42, 174–180.

    PubMed  CAS  Google Scholar 

  62. Cánovas, D., Vargas, C., Ventosa, A., et al., (1997) Salt-sensitive and auxotrophic mutants of Halomonas elongata and H. meridiana by use of hydroxylamine mutagenesis. Curr. Microbiol. 34, 85–90.

    Article  Google Scholar 

  63. Llamas, I., Béjar, V., Argandoña, M., et al., (1999) Chemical mutagenesis of Halomonas eurihalina and selection of exopolysaccharide-deficient variants. Biotechnol. Lett. 21, 367–370.

    Article  CAS  Google Scholar 

  64. Ubben, D. and Schmitt, R. (1986) Tn1721 derivatives for transposon mutagenesis, restriction mapping and nucleotide sequence analysis. Gene 41, 145–152.

    Article  PubMed  CAS  Google Scholar 

  65. Schmitt, R., Bernhard, E., and Mattes, R. (1979) Characterization of Tn1721, a new transposon containing a tetracycline resistance gene capable of amplification. Mol. Gen. Genet. 172, 53–65.

    Article  PubMed  CAS  Google Scholar 

  66. Allmeier, H., Cresnar, B., Greck, M., et al., (1992) Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111, 1120.

    Article  PubMed  CAS  Google Scholar 

  67. Göller, K., Ofer, A., and Galinski, E.A. (1998) Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiol. Let. 161, 293–300.

    Article  Google Scholar 

  68. Cánovas, D., Vargas, C., Iglesias-Guerra, F., et al., (1997) Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J. Biol. Chem. 272, 2579425801.

    Article  PubMed  Google Scholar 

  69. Grammann, K., Volke, A., and Kunte, H. J. (2002) New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581. J. Bacteriol. 184, 3078–3085.

    Article  PubMed  CAS  Google Scholar 

  70. Coronado, M.J., Vargas, C., Mellado, E., et al., (2000) The α-amylase gene of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146, 861–868.

    PubMed  CAS  Google Scholar 

  71. Llamas, I., Argandoña, M., Quesada, E., et al., (2000) Transposon mutagenesis in Halomonas eurihalina. Res. Microbiol. 150, 13–18.

    Article  Google Scholar 

  72. Llamas. I., Suárez, A., Quesada, E., et al., (2003) Identification and characterization of the carAB genes responsible for encoding carbamoylphosphate synthetase in Halomonas eurihalina. Extremophiles 7, 205–211.

    PubMed  CAS  Google Scholar 

  73. Ubben, D. and Schmitt, R. (1987) A transposable promoter and transposable promoter probes derived from Tn1721. Gene 53, 127–134.

    Article  PubMed  CAS  Google Scholar 

  74. De Lorenzo, V., Herrero, M., Jakubzik, U., et al., (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative bacteria. J. Bacteriol. 172, 6568–6572.

    PubMed  Google Scholar 

  75. Horton, R. M., Hunt, H. D., Ho, S. N., et al., (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.

    Article  PubMed  CAS  Google Scholar 

  76. Schäfer, A., Tauch, A., Jäger, W, et al., (1994) Small mobilizable multipurpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.

    Article  PubMed  Google Scholar 

  77. Tokunaga, H., Ishibashi, M., Arisaka, F., et al., (2008) Residue 134 determines the dimer–tetramer assembly of nucleoside diphosphate kinase from moderately halophilic bacteria. FEBS Letters 582, 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  78. Prentki, P. and Krisch, H. M. (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313.

    Article  PubMed  CAS  Google Scholar 

  79. Quandt, J. and Hynes, M. (1993) Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127, 15–21.

    Article  PubMed  CAS  Google Scholar 

  80. Kessler, B., De Lorenzo, V., and Timmis, N. K. (1992) A general system to integrate lacZ fusions into the chromosome of Gram negative bacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233, 293–301.

    Article  PubMed  CAS  Google Scholar 

  81. Douka, E., Christogianni, A., Koukkou, A. I., et al., (2001) Use of a green fluorescent protein as a reporter in Zymomonas mobilis and Halomonas elongata. FEMS Microbiol. Lett. 201, 221–227.

    Article  PubMed  CAS  Google Scholar 

  82. Lindgren, P. B., Frederick, R., Govindarajan, A. G., Panopoulos, N. J., Staskawicz, B. J., and Lindow, S. E., et al., (1989) An ice nucleation reporter gene system: identification of inducible pathogenicity genes in Pseudomonas syringae pv. Phaseolicola. EMBO J. 8, 2990–3001.

    Google Scholar 

  83. Tegos, C., Vargas, C., Vartholomatos, G., et al., (1997) Identification of a promoter region on the Halomonas elongata plasmid pHE1 employing the inaZ reporter gene of Pseudomonas syringae. FEMS Microbiol. Lett. 154, 45–51.

    Article  PubMed  CAS  Google Scholar 

  84. Chalfie, M., Tu, Y., Euskirchen, G., et al., (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  85. Cormark, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.

    Article  Google Scholar 

  86. Goldrick, M., and Kessler, D. (2003) RNA analysis by nuclease protection, in Current Protocols in Neuroscience (Gerfen, C., ed.), John Wiley and Sons, Inc., pp. 5.1–5.30.

    Google Scholar 

  87. Fekete, R.A., Miller, M.J. and Chattoraj, D.K (2003) Fluorescently labeled oligonucleotide extension, a rapid and quantitative protocol for primer extension. Biotechniques 35, 90–94.

    PubMed  CAS  Google Scholar 

  88. Lloyd, A.L., Marshall, B.J. and Mee, B.J. (2004) Identifying cloned Helicobacter pylori promoters by primer extension using a FAM-labeled primer and GeneScanR analysis. J. Microbiol. Meth. 60, 291–298.

    Article  Google Scholar 

  89. Ducey, T.F., Jackson, L., Orvis, J. et al., (2009) Transcript analysis of nrrF, a Fur repressed sRNA of Neisseria gonorrhoeae. Microb. Pathog. 46, 166–170.

    Article  PubMed  CAS  Google Scholar 

  90. Tobias, N.J., Seemann, T., Pidot, S.J., et al., (2009) Mycolactone gene expression is controlled by strong SigA-like promoters with utility in studies of Mycobacterium ulcerans and Buruli Ulcer. PLoS Negl. Trop. Dis. 3, e553.

    Article  PubMed  Google Scholar 

  91. Schweikhard, E.S., Kuhlmann, S.I., Kunte, H.J., et al., (2010) Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of Halomonas elongata DSM 2581(T). Biochemistry 49, 2194–2204.

    Article  PubMed  CAS  Google Scholar 

  92. Rodríguez-Sáiz, M., Sánchez-Porro, C., De La Fuente, J., et al., (2007) Engineering the halophilic bacterium Halomonas elongata to produce β-carotene. Appl. Microbiol. Biotechnol. 77, 637–643.

    Article  PubMed  Google Scholar 

  93. Kim, D., Kim, S.W., Choi, K.Y., et al., (2008) Molecular cloning and functional characterization of the genes encoding benzoate and p-hydroxybenzoate degradation by the halophilic Chromohalobacter sp. strain HS-2. FEMS Microbiol. Lett. 280, 235–241.

    CAS  Google Scholar 

  94. Krejcik, Z., Hollemeyer, K., Smits, T.H. et al., (2010) Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase. Microbiology 156, 1547–1555.

    Article  PubMed  CAS  Google Scholar 

  95. Yuste, L., Canosa, I. and Rojo, F. (1998) Carbon-source-dependant expression of the PalkB promoter from Pseudomonas oleovorans alkane degradation pathway. J. Bacteriol. 180, 5218–5226.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory was financially supported by grants from the Spanish Ministerio de Ciencia e Innovación (grant BIO2008-04117) and Junta de Andalucía (grant P08-CVI-03724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín J. Nieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Argandoña, M., Vargas, C., Reina-Bueno, M., Rodríguez-Moya, J., Salvador, M., Nieto, J.J. (2012). An Extended Suite of Genetic Tools for Use in Bacteria of the Halomonadaceae: An Overview. In: Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 824. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-433-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-433-9_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-432-2

  • Online ISBN: 978-1-61779-433-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics