Skip to main content
Log in

Production of Low Molecular Weight P(3HB-co-3HV) by Butyrateacetoacetate CoA-transferase (cftAB) in Escherichia coli

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Naturally degradable bioplastic polyhydroxyalkanoate (PHA) is a promising biopolymer and its physical properties could be changed by introducing of different monomers such as 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx). To produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV)) including a high fraction of hydroxyvalerate, we introduced ctfAB into engineered Escherichia coli YJ200 possessing a pLW487 vector containing bktB, phaB, and phaC under control of the trc promoter. To enhance the HV fraction of P(3HB-co-3HV), the optimal concentrations of propionate, which acts as a precursor of 3HV and isopropyl β-D-1-thiogalactopyranoside, were determined and found to be 0.1 mM and 0.3%, respectively. Under the optimized conditions, E. coli, YJ201 produced P(3HB-co-3HV) containing a large amount of 3HV. Comparison with other CoA transferases showed that CtfAB produced relatively lower molecular weight copolymers. This demonstrates the necessity of identifying additional different CoA transferases, because CoA transferase can affect both the monomer fraction and molecular weight of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huijberts, G. N., G. Eggink, P. de Waard, G. W. Huisman, and B. Witholt (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58: 536–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McCool, G. J. and M. C. Cannon (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J. Bacteriol. 181: 585–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jeon, J. M., C. J. Brigham, Y. H. Kim, H. J. Kim, D. H. Yi, H. Kim, C. K. Rha, A. J. Sinskey, and Y. H. Yang (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 98: 5461–5469.

    Article  CAS  PubMed  Google Scholar 

  4. Jeon, J. M., H. J. Kim, S. K. Bhatia, C. Sung, H. M. Seo, J. H. Kim, H. Y. Park, D. Lee, C. J. Brigham, and Y. H. Yang (2017) Application of acetyl-CoA acetyltransferase (atoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Bioprocess Biosyst. Eng. 40: 781–789.

    Article  CAS  PubMed  Google Scholar 

  5. Bhatia, S. K., R. K. Bhatia, and Y. H. Yang (2016) Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation. Rev. Environ. Sci. Biotechnol. 15: 639–663.

    Article  CAS  Google Scholar 

  6. Kulpreecha, S., A. Boonruangthavorn, B. Meksiriporn, and N. Thongchul (2009) Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J. Biosci. Bioeng. 107: 240–245.

    Article  CAS  PubMed  Google Scholar 

  7. Du, C., J. Sabirova, W. Soetaert, and C. S. K. Lin (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 6: 14–25.

    CAS  Google Scholar 

  8. Koller, M. and G. Braunegg (2018) Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EBTJ. 2: 89–103.

    Article  Google Scholar 

  9. Hong, Y. G., Y. M. Moon, J. W. Hong, T. R. Choi, H. R. Jung, S. Y. Yang, D. W. Jang, Y. R. Park, C. Brigham, J. S. Kim, Y. K. Lee, and Y. H. Yang (2019) Discarded egg yolk as an alternate source of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J. Microbiol. Biotechnol. 29: 382–391.

    Article  PubMed  Google Scholar 

  10. Bhatia, S. K., J. H. Kim, M. S. Kim, J. Kim, J. W. Hong, Y. G. Hong, H. J. Kim, J. M. Jeon, S. H. Kim, J. Ahn, H. Lee, and Y. H. Yang (2018) Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioproc. Biosyst. Eng. 41: 229–235.

    Article  CAS  Google Scholar 

  11. Bhatia, S. K., R. Gurav, T. R. Choi, H. R. Jung, S. Y. Yang, H. S. Song, J. M. Jeon, J. S. Kim, Y. K. Lee, and Y. H. Yang (2019) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int. J. Biol. Macromol. 133: 1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Chuah, J. A., M. Yamada, S. Taguchi, K. Sudesh, Y. Doi, and K. Numata (2013) Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties@@. Polym. Degrad. Stab. 98: 331–338.

    Article  CAS  Google Scholar 

  13. Li, Z. J., Z. Y. Shi, J. Jian, Y. Y. Guo, Q. Wu, and G. Q. Chen (2010) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab. Eng. 12: 352–359.

    Article  CAS  PubMed  Google Scholar 

  14. Muzaiyanah, A. R. and A. A. Amirul (2013) Studies on the microbial synthesis and characterization of polyhydroxyalkanoates containing 4-hydroxyvalerate using γ-valerolactone. Appl. Biochem. Biotechnol. 170: 1194–1215.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, S. Y. (1996) Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1–14.

    Article  CAS  PubMed  Google Scholar 

  16. Bhatia, S. K., R. Gurav, T. R. Choi, H. R. Jung, S. Y. Yang, Y. M. Moon, H. S. Song, J. M. Jeon, K. Y. Choi, and Y. H. Yang (2019) Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271: 306–315.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, Y. H., C. J. Brigham, C. F. Budde, P. Boccazzi, L. B. Willis, M. A. Hassan, Z. A. M. Yusof, C. K. Rha, and A. J. Sinskey (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl. Microbiol. Biotechnol. 87: 2037–2045.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, Y., J. C. Chen, Y. M. Ma, and G. Q. Chen (2020) Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab. Eng. 58: 82–93.

    Article  CAS  PubMed  Google Scholar 

  19. Sim, S. J., K. D. Snell, S. A. Hogan, J. Stubbe, C. Rha, and A. J. Sinskey (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat. Biotechnol. 15: 63–67.

    Article  CAS  PubMed  Google Scholar 

  20. Meng, D. C., Z. Y. Shi, L. P. Wu, Q. Zhou, Q. Wu, J. C. Chen, and G. Q. Chen (2012) Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab. Eng. 14: 317–324.

    Article  CAS  PubMed  Google Scholar 

  21. Cruz, M. V., D. Araújo, V. D. Alves, F. Freitas, and M. A. Reis (2016) Characterization of medium chain length polyhydroxyalkanoate produced from olive oil deodorizer distillate. Int. J. Biol. Macromol. 82: 243–248.

    Article  CAS  PubMed  Google Scholar 

  22. Park, D. H. and B. S. Kim (2011) Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. N Biotechnol. 28: 719–724.

    Article  CAS  PubMed  Google Scholar 

  23. Sun, J., F. Shozui, M. Yamada, K. Matsumoto, K. Takase, and S. Taguchi (2010) production of P(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) terpolymers using a chimeric PHA synthase in recombinant Ralstonia eutropha and Pseudomonas putida. Biosci. Biotechnol. Biochem. 74: 1716–1718.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, X. W., H. H. Wang, J. Y. Chen, X. T. Li, and G. Q. Chen (2009) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli harboring propionyl-CoA synthase gene (prpE) or propionate permease gene (prpP). Biochem. Eng. J. 43: 72–77.

    Article  CAS  Google Scholar 

  25. Yang, Y. H., C. J. Brigham, E. Song, J. M. Jeon, C. K. Rha, and A. J. Sinskey (2012) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. J. Appl. Microbiol. 113: 815–823.

    Article  CAS  PubMed  Google Scholar 

  26. Bhatia, S., D. H. Yi, H. J. Kim, J. M. Jeon, Y. H. Kim, G. Sathiyanarayanan, H. M. Seo, J. H. Lee, J. H. Kim, K. Park, C. J. Brigham, and Y. H. Yang (2015) Overexpression of succinyl-CoA synthase for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production in engineered Escherichia coli BL21 (DE3). J. Appl. Microbiol 119: 724–735.

    Article  CAS  PubMed  Google Scholar 

  27. Park, S. J., W. S. Ahn, P. R. Green, and S. Y. Lee (2001) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerateco-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol. Bioeng. 74: 81–86.

    Article  CAS  PubMed  Google Scholar 

  28. Jung, H. R., S. Y. Yang, Y. M. Moon, T. R. Choi, H. S. Song, S. K. Bhatia, R. Gurav, E. J. Kim, B. G. Kim, and Y. H. Yang (2019) Construction of efficient platform Escherichia coli strains for polyhydroxyalkanoate production by engineering branched pathway. Polymers. 11: 509.

    Article  CAS  PubMed Central  Google Scholar 

  29. Lu, C., L. Yu, S. Varghese, M. Yu, and S. T. Yang (2017) Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. Bioresour. Technol. 243: 1000–1008.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, H., N. M. Castro, G. N. Bennett, and K. Y. San (2006) Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl. Microbiol. Biotechnol. 71: 870–874.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Y. H., C. Brigham, L. Willis, C. K. Rha, and A. Sinskey (2011) Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnol. Lett. 33: 937–942.

    Article  CAS  PubMed  Google Scholar 

  32. Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) Rapid gas-chromatographic method for determination of poly-betahydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29–37.

    Article  CAS  Google Scholar 

  33. York, G. M., J. Lupberger, J. Tian, A. G. Lawrence, J. Stubbe, and A. J. Sinskey (2003) Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J. Bacteriol. 185: 3788–3794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyake, M., J. Schnackenberg, R. Kurane, and Y. Asada (2000) Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate. Appl. Biochem. Biotechnol. 84–86: 1039–1044.

    Article  PubMed  Google Scholar 

  35. Rhie, H. G. and D. Dennis (1995) The function of ackA and pta genes is necessary for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha+ Escherichia coli. Can. J. Microbiol. 41: 200–206.

    Article  CAS  PubMed  Google Scholar 

  36. Budde, C. F., A. E. Mahan, J. Lu, C. Rha, and A. J. Sinskey (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J. Bacteriol. 192: 5319–5328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hahn, S. K., Y. K. Chang, and S. Y. Lee (1995) Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl. Environ. Microbiol. 61: 34–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Theodorou, E. C., M. C. Theodorou, and D. A. Kyriakidis (2013) Regulation of poly-(R)-(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis by the AtoSCDAEB regulon in phaCAB+ Escherichia coli. Appl. Microbiol. Biotechnol. 97: 5259–5274.

    Article  CAS  PubMed  Google Scholar 

  39. Kalia, V. C., S. Lal, Rashmi, A. Chauhan, and G. Bhattacharyya (2015) In silico reconstitution of novel routes for microbial plastic. pp. 299–315. In: V. C. Kalia (ed.). Microbial Factories: Biodiversity, Biopolymers, Bioactive Molecules. Springer, New Delhi, India.

    Chapter  Google Scholar 

  40. Park, S. J., J. I. Choi, and S. Y. Lee (2005) Short-chain-length polyhydroxyalkanoates: synthesis in metabolically engineered Escherichia coli and medical applications. J. Microbiol. Biotechnol. 15: 206–215.

    CAS  Google Scholar 

  41. Moon, Y. M., S. Y. Yang, T. R. Choi, H. R. Jung, H. S. Song, Y. H. Han, H. Y. Park, S. K. Bhatia, R. Gurav, K. Park, J. S. Kim, and Y. H. Yang (2019) Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5′-phosphate and ATP. Enzyme Microb. Technol. 127: 58–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Program to solve social issues of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017M3A9E4077234) and National Research Foundation of Korea (NRF) (NRF-2017R1D1A1B03033594, NRF- 2019M3E6A1103979 and NRF-2019R1F1A1058805). In addition, this work was also supported by the polar academic program (PAP, PE18900). This paper was also supported by Konkuk University Researcher Fund in 2019.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Oh Seo or Yung-Hun Yang.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, TR., Jeon, JM., Bhatia, S.K. et al. Production of Low Molecular Weight P(3HB-co-3HV) by Butyrateacetoacetate CoA-transferase (cftAB) in Escherichia coli. Biotechnol Bioproc E 25, 279–286 (2020). https://doi.org/10.1007/s12257-019-0366-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0366-1

Keywords

Navigation