Skip to main content
Log in

Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cyanobacteria are photosynthetic bacteria that can directly convert CO2 into several bio-products for industrial use, such as alcohols and diols, terpenes, acids, and sugars. However, some of these compounds are either produced in low amounts or are absent in cyanobacteria, and thus strain development is required to achieve optimal production of these bio-products for industrial applications. Metabolic engineering has been applied to modify cyanobacteria for enhanced production of value-added compounds. In this review, we have elucidated metabolic engineering of various pathways with the yield and productivity of the desired products. We have also described recent overall strategies in advanced metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santos-Merino, M., A. K. Singh, and D. C. Ducat (2019) New Applications of synthetic biology tools for cyanobacterial metabolic engineering. Front. Bioeng. Biotechnol. 7: 33.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kanno, M., A. L. Carroll, and S. Atsumi (2017) Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat. Commun. 8: 14724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woo, H. M. (2017) Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 45: 1–7.

    Article  CAS  PubMed  Google Scholar 

  4. Ko, S. C., H. J. Lee, S. Y. Choi, J. I. Choi, and H. M. Woo (2019) Bio-solar cell factories for photosynthetic isoprenoids production. Planta. 249: 181–193.

    Article  CAS  PubMed  Google Scholar 

  5. Atanasov, A. G., B. Waltenberger, E. M. Pferschy-Wenzig, T. Linder, C. Wawrosch, P. Uhrin, V. Temml, L. Wang, S. Schwaiger, E. H. Heiss, J. M. Rollinger, D. Schuster, J. M. Breuss, V. Bochkov, M. D. Mihovilovic, B. Kopp, R. Bauer, V. M. Dirsch, and H. Stuppner (2015) Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33: 1582–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lau, N. S., M. Matsui, and A. A. A. Abdullah (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed. Res. Int. 2015: 754934.

    PubMed  PubMed Central  Google Scholar 

  7. Huang, H. H. and P. Lindblad (2013) Wide-dynamic-range promoters engineered for cyanobacteria. J. Biol. Eng. 7: 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Englund, E., K. Shabestary, E. P. Hudson, and P. Lindberg (2018) Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as amodel compound. Metab. Eng. 49: 164–177.

    Article  CAS  PubMed  Google Scholar 

  9. Jin, H., P. Lindblad, and D. Bhaya (2019) Building an inducible T7 RNA polymerase/T7 promoter circuit in Synechocystis sp. PCC6803. ACS Synth. Biol. 8: 655–660.

    Article  CAS  PubMed  Google Scholar 

  10. Ruffing, A. M., T. J. Jensen, and L. M. Strickland (2016) Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis. Microb. Cell Fact. 15: 190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kopka, J., S. Schmidt, F. Dethloff, N. Pade, S. Berendt, M. Schottkowski, N. Martin, U. Dühring, E. Kuchmina, H. Enke, D. Kramer, A. Wilde, M. Hagemann, and A. Friedrich (2017) Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol. Biofuels. 10: 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lee, H. J., J. Lee, S. M. Lee, Y. Urn, Y. Kim, S. J. Sim, J. I. Choi, and H. M. Woo (2017) Direct conversion of CO2 to alpha-farnesene using metabolically engineered Synechococcus elongatus PCC 7942. J. Agric. Food Chem. 65: 10424–10428.

    Article  CAS  PubMed  Google Scholar 

  13. Hirokawa, Y., I. Suzuki, and T. Hanai (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J. Biosci. Bioeng. 119: 585–590.

    Article  CAS  PubMed  Google Scholar 

  14. Halfinann, C., L. Gu, W. Gibbons, and R. Zhou (2014) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl. Microbiol. Biotechnol. 98: 9869–9877.

    Article  CAS  Google Scholar 

  15. Higo, A. and S. Ehira (2019) Anaerobic butanol production driven by oxygen-evolving photosynthesis using the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Appl. Microbiol. Biotechnol. 103: 2441–2447.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, C. H., C. R. Shen, H. Li, L. Y. Sung, M. Y. Wu, and Y. C. Hu (2016) CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb. Cell Fact. 15: 196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Berla, B. M., R. Saha, C. M. Immethun, C. D. Maranas, T. S. Moon, and H. B. Pakrasi (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 4: 246.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gordon, G. C. and B. Pfleger (2018) Regulatory tools for controlling gene expression in cyanobacteria. Adv. Exp. Med. Biol. 1080: 281–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Englund, E., F. Liang, and P. Lindberg (2016) Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep. 6: 36640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao, Z., H. Zhao, Z. Li, X. Tan, and X. Lu (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ. Sci. 5: 9857–9865.

    Article  CAS  Google Scholar 

  21. Kim, W. I., S. M. Lee, Y. Urn, S. I. Sim, and H. M. Woo (2017) Development of SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942. Front. Plant Sci. 8: 293.

    PubMed  PubMed Central  Google Scholar 

  22. Wendt, K. E., I. Ungerer, R. E. Cobb, H. Zhao, and H. B. Pakrasi (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX2973. Microb. Cell Fact. 15: 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li, H., C. R. Shen, C. H. Huang, L. Y. Sung, M. Y. Wu, and Y. C. Hu (2016) CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab. Eng. 38: 293–302.

    Article  CAS  PubMed  Google Scholar 

  24. Larson, M. H., L. A. Gilbert, X. Wang, W. A. Lim, I. S. Weissman, and L. S. Qi (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8:2180–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng, M. D. and I. R. Coleman (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65: 523–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dexter, J. and P. Fu (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2: 857–864.

    Article  CAS  Google Scholar 

  27. Lan, E. I., S. Y. Ro, and I. C. Liao (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ. Sci. 6: 2672–2681.

    Article  CAS  Google Scholar 

  28. Choi, Y. N. and I. M. Park (2016) Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresour Technol. 213: 54–57.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshikawa, K., T. Hirasawa, and H. Shimizu (2015) Effect of malic enzyme on ethanol production by Synechocystis sp. PCC 6803. J. Biosci. Bioeng. 119: 82–84.

    Article  CAS  PubMed  Google Scholar 

  30. Namakoshi, K., T. Nakajima, K. Yoshikawa, Y. Toya, and H. Shimizu (2016) Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803. J. Biotechnol. 239: 13–19.

    Article  CAS  PubMed  Google Scholar 

  31. Kusakabe, T., T. Tatsuke, K. Tsuruno, Y. Hirokawa, S. Atsumi, J. C. Liao, and T. Hanai (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab. Eng. 20: 101–108.

    Article  CAS  PubMed  Google Scholar 

  32. Hirokawa, Y., Y. Dempo, E. Fukusaki, and T. Hanai (2017) Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions. J. Biosci. Bioeng. 123: 39–45.

    Article  CAS  PubMed  Google Scholar 

  33. Atsumi, S., W. Higashide, and I. C. Liao (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27: 1177–1180.

    Article  CAS  PubMed  Google Scholar 

  34. Li, X., C. R. Shen, and I. C. Liao (2014) Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynth. Res. 120: 301–310.

    Article  CAS  PubMed  Google Scholar 

  35. Shen, C. R. and J. C. Liao (2012) Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ. Sci. 5: 9574–9583.

    Article  CAS  Google Scholar 

  36. Varman, A. M., Y. Xiao, H. B. Pakrasi, and Y. I. Tang (2013) Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl. Environ. Microbiol. 79: 908–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miao, R., X. Liu, E. Englund, P. Lindberg, and P. Lindblad (2017) Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metab. Eng. Commun. 5: 45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miao, R., H. Xie, F. M. Ho, and P. Lindblad (2018) Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803. Metab. Eng. 47: 42–48.

    Article  CAS  PubMed  Google Scholar 

  39. Miao, R., H. Xie, and P. Lindblad (2018) Enhancement of photosynthetic isobutanol production in engineered cells of Synechocystis PCC 6803. Biotechnol. Biofuels. 11: 267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lan, E. I. and J. C. Liao (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl. Acad. Sci. USA. 109: 6018–6023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, X., R. Miao, P. Lindberg, and P. Lindblad (2019) Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy Environ. Sci. 12: 2765–2777.

    Article  Google Scholar 

  42. Chwa, I. W., W. I. Kim, S. I. Sim, Y. Urn, and H. M. Woo (2016) Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition. Plant Biotechnol. J. 14: 1768–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fathima, A. M., D. Chuang, W. A. Lavina, I. Liao, S. P. Putri, and E. Fukusaki (2018) Iterative cycle of widely targeted metabolic profiling for the improvement of 1-butanol titer and productivity in Synechococcus elongatus. Biotechnol. Biofuels. 11: 188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lee, H. I., I. Son, S. I. Sim, and H. M. Woo (2020) Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses for acetone production in cyanobacteria. Plant Biotechnol. J. 18: 1860–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Savakis, P. E., S. A. Angermayr, and K. I. Hellingwerf (2013) Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab. Eng. 20: 121–130.

    Article  CAS  PubMed  Google Scholar 

  46. Oliver, J. W. K., I. M. P. Machado, H. Yoneda, and S. Atsumi (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc. Natl. Acad. Sci. USA. 110: 1249–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oliver, I. W. K., I. M. P. Machado, H. Yoneda, and S. Atsumi (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab. Eng. 22: 76–82.

    Article  CAS  PubMed  Google Scholar 

  48. Li, H. and J. C. Liao (2013) Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb. Cell Fact. 12: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. David, C., A. Schmid, and K. Biihler (2019) Cellular physiology controls photoautotrophic production of 1,2-propanediol from pools of CO2 and glycogen. Biotechnol. Bioeng. 116: 882–892.

    Article  CAS  PubMed  Google Scholar 

  50. Hirokawa, Y., Y. Maki, T. Tatsuke, and T. Hanai (2016) Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway. Metab. Eng 34: 97–103.

    Article  CAS  PubMed  Google Scholar 

  51. Hirokawa, Y., Y. Maki, and T. Hanai (2017) Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Metab. Eng. 39: 192–199.

    Article  CAS  PubMed  Google Scholar 

  52. Lan, E. I., D. S. Chuang, C. R. Shen, A. M. Lee, S. Y. Ro, and J. C. Liao (2015) Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. Metab. Eng. 31: 163–170.

    Article  CAS  PubMed  Google Scholar 

  53. Balaji, S., K. Gopi, and B. Muthuvelan (2013) A review on production of poly p hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res. 2: 278–285.

    Article  Google Scholar 

  54. Wang, Y., T. Sun, X. Gao, M. S. M. L. Wu, L. Chen, and W. Zhang (2016) Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng. 34: 60–70.

    Article  PubMed  CAS  Google Scholar 

  55. Angermayr, S. A., M. Paszota, and K. J. Hellingwerf (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol. 78: 7098–7106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Angermayr, S. A. and K. J. Hellingwerf (2013) On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories. J. Phys. Chem. B. 117: 11169–11175.

    Article  CAS  PubMed  Google Scholar 

  57. van der Woude, A. D., S. A. Angermayr, V. Puthan Veetil, A. Osnato, and K. J. Hellingwerf (2014) Carbon sink removal: Increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant. J. Biotechnol. 184: 100–102.

    Article  PubMed  CAS  Google Scholar 

  58. Angermayr, S. A., A. D. van der Woude, D. Correddu, A. Vreugdenhil, V. Verrone, and K. J. Hellingwerf (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol. Biofuels. 7: 99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Varman, A. M., Y. Yu, L. You, and Y. I. Tang (2013) Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb. Cell Fact. 12: 117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. McNeely, K., Y. Xu, N. Bennette, D. A. Bryant, and G. C. Dismukes (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl. Environ. Microbiol. 76: 5032–5038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Osanai, T., T. Shirai, H. Iijima, Y. Nakaya, M. Okamoto, A. Kondo, and M. Y. Hirai (2015) Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium. Front. Microbiol. 6: 1064.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lan, E. I. and C. T. Wei (2016) Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab. Eng. 38: 483–493.

    Article  CAS  PubMed  Google Scholar 

  63. Hasunuma, T., M. Matsuda, Y. Kato, C. J. Vavricka, and A. Kondo (2018) Temperature enhanced succinate production concurrent with increased central metabolism turnover in the cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng. 48: 109–120.

    Article  CAS  PubMed  Google Scholar 

  64. Ducat, D. C., I. A. Avelar-Rivas, I. C. Way, and P. A. Silver (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78: 2660–2668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Du, W., F. Liang, Y. Duan, X. Tan, and X. Lu (2013) Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab. Eng. 19: 17–25.

    Article  CAS  PubMed  Google Scholar 

  66. Song, K., X. Tan, Y. Liang, and X. Lu (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl. Microbiol. Biotechnol. 100: 7865–7875.

    Article  CAS  PubMed  Google Scholar 

  67. Jacobsen, J. H. and N. U. Frigaard (2014) Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab. Eng. 21: 60–70.

    Article  CAS  PubMed  Google Scholar 

  68. Madsen, M. A., S. Semerdzhiev, A. Amtmann, and T. Tonon (2018) Engineering mannitol biosynthesis in Escherichia coli and Synechococcus sp. PCC 7002 using a green algal fusion protein. ACS Synth. Biol. 7: 2833–2840.

    Article  CAS  PubMed  Google Scholar 

  69. Chin, T., Y. Okuda, and M. Ikeuchi (2018) Sorbitol production and optimization of photosynthetic supply in the cyanobacterium Synechocystis PCC 6803. J. Biotechnol. 276-277: 25–33.

    Article  CAS  PubMed  Google Scholar 

  70. Chin, T. and M. Ikeuchi (2018) Detection of active sorbitol-6-phosphate phosphatase in the haloacid dehalogenase-like hydrolase superfamily. J. Gen. Appl. Microbiol. 64: 248–252.

    Article  CAS  PubMed  Google Scholar 

  71. Chin, T., Y. Okuda, and M. Ikeuchi (2019) Improved sorbitol production and growth in cyanobacteria using promiscuous haloacid dehalogenase-like hydrolase. J. Biotechnol. X. 1: 100002.

    Google Scholar 

  72. van der Woude, A. D., R. Perez Gallego, A. Vreugdenhil, V. Puthan Veetil, T. Chroumpi, and K. J. Hellingwerf (2016) Genetic engineering of Synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol. Microb. Cell Fact. 15: 60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Davies, F. K., R. E. Jinkerson, and M. C. Posewitz (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth. Res. 123: 265–284.

    Article  CAS  PubMed  Google Scholar 

  74. Betterle, N. and A. Melis (2019) Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnol. Bioeng. 116: 2041–2051.

    Article  CAS  PubMed  Google Scholar 

  75. Choi, S. Y., H. I. Lee, I. Choi, I. Kim, S. I. Sim, Y. Urn, Y. Kim, T. S. Lee, I. D. Keasling, and H. M. Woo (2016) Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnol. Biofuels. 9: 202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Du, F. L., H. L. Yu, I. H. Xu, and C. X. Li (2014) Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresour Bioprocess. 1: 10.

    Article  Google Scholar 

  77. Lin, P. C. and H. B. Pakrasi (2019) Engineering cyanobacteria for production of terpenoids. Planta. 249: 145–154.

    Article  CAS  PubMed  Google Scholar 

  78. Lindberg, P., S. Park, and A. Melis (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12: 70–79.

    Article  CAS  PubMed  Google Scholar 

  79. Bentley, F. K. and A. Melis (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/ aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol. Bioeng. 109: 100–109.

    Article  CAS  PubMed  Google Scholar 

  80. Bentley, F. K., A. Zurbriggen, and A. Melis (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant. 7: 71–86.

    Article  CAS  PubMed  Google Scholar 

  81. Chaves, I. E., P. R. Romero, H. Kirst, and A. Melis (2016) Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production. Photosynth. Res. 130: 517–527.

    Article  CAS  PubMed  Google Scholar 

  82. Chaves, I. E., P. Rueda-Romero, H. Kirst, and A. Melis (2017) Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth. Biol. 6: 2281–2292.

    Article  CAS  PubMed  Google Scholar 

  83. Chaves, J. E. and A. Melis (2018) Biotechnology of cyanobacterial isoprene production. Appl. Microbiol. Biotechnol. 102: 6451–6458.

    Article  CAS  PubMed  Google Scholar 

  84. Gao, X., F. Gao, D. Liu, H. Zhang, X. Nie, and C. Yang (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ. Sci. 9: 1400–1411.

    Article  CAS  Google Scholar 

  85. Davies, F. K., V. H. Work, A. S. Beliaev, and M. C. Posewitz (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front. Bioeng. Biotechnol. 2: 21.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wang, X., W. Liu, C. Xin, Y. Zheng, Y. Cheng, S. Sun, R. Li, X. G. Zhu, S. Y. Dai, P. M. Rentzepis, and I. S. Yuan (2016) Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc. Natl. Acad. Sci. USA. 113: 14225–14230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Halfmann, C., L. Gu, and R. Zhou (2014) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem. 16: 3175–3185.

    Article  CAS  Google Scholar 

  88. Kiyota, H., Y. Okuda, M. Ito, M. Y. Hirai, and M. Ikeuchi (2014) Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J. Biotechnol. 185: 1–7.

    Article  CAS  PubMed  Google Scholar 

  89. Lin, P. C., R. Saha, F. Zhang, and H. B. Pakrasi (2017) Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep. 7: 17503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bentley, F. K., J. G. Garcia-Cerdan, H. C. Chen, and A. Melis (2013) Paradigm of monoterpene (P-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. BioEnerg. Res. 6: 917–929.

    Article  CAS  Google Scholar 

  91. Formighieri, C. and A. Melis (2014) Regulation of beta-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta. 240: 309–324.

    Article  CAS  PubMed  Google Scholar 

  92. Formighieri, C. and A. Melis (2015) A phycocyaninphellandrene synthase fusion enhances recombinant protein expression and beta-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab. Eng. 32: 116–124.

    Article  CAS  PubMed  Google Scholar 

  93. Betterle, N. and A. Melis (2018) Heterologous leader sequences in fusion constructs enhance expression of geranyl diphosphate synthase and yield of beta-phellandrene production in cyanobacteria (Synechocystis). ACS Synth. Biol. 7: 912–921.

    Article  CAS  PubMed  Google Scholar 

  94. Formighieri, C. and A. Melis (2016) Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth. Res. 130: 123–135.

    Article  CAS  PubMed  Google Scholar 

  95. Pattharaprachayakul, N., H. J. Lee, A. Incharoensakdi, and H. M. Woo (2019) Evolutionary engineering of cyanobacteria to enhance the production of α-farnesene from CO2. J. Agric. Food Chem. 67: 13658–13664.

    Article  CAS  PubMed  Google Scholar 

  96. Reinsvold, R. E., R. E. Jinkerson, R. Radakovits, M. C. Posewitz, and C. Basu (2011) The production of the sesquiterpene beta-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J. Plant Physiol. 168: 848–852.

    Article  CAS  PubMed  Google Scholar 

  97. Englund, E., J. Andersen-Ranberg, R. Miao, B. Hamberger, and P. Lindberg (2015) Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synth. Biol. 4: 1270–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vavitsas, K., E. O. Rue, L. K. Stefansdottir, T. Gnanasekaran, A. Blennow, C. Crocoll, S. Gudmundsson, and P. E. Jensen (2017) Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways. Microb. Cell Fact. 16: 140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Zhang, C., H. Ju, C. Z. Lu, F. Zhao, J. Liu, X. Guo, Y. Wu, G. R. Zhao, and W. Lu (2019) High-titer production of 13R-manoyl oxide in metabolically engineered Saccharomyces cerevisiae. Microb. Cell Fact. 18: 73.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Formighieri, C. and A. Melis (2017) Heterologous synthesis of geranyllinalool, a diterpenol plant product, in the cyanobacterium Synechocystis. Appl. Microbiol. Biotechnol. 101: 2791–2800.

    Article  CAS  PubMed  Google Scholar 

  101. Englund, E., B. Pattanaik, S. J. Ubhayasekera, K. Stensjo, J. Bergquist, and P. Lindberg (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One. 9: e90270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Choi, S. Y., J. Y. Wang, H. S. Kwak, S. M. Lee, Y. Urn, Y. Kim, S. J. Sim, J. I. Choi, and H. M. Woo (2017) Improvement of squalene production from CO2 in Synechococcus elongatus PCC 7942 by metabolic engineering and scalable production in a photobioreactor. ACS Synth. Biol. 6: 1289–1295.

    Article  CAS  PubMed  Google Scholar 

  103. Taton, A., F. Unglaub, N. E. Wright, W. Y. Zeng, J. Paz-Yepes, B. Brahamsha, B. Palenik, T. C. Peterson, F. Haerizadeh, S. S. Golden, and J. W. Golden (2014) Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res. 42: e136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bishe, B., A. Taton, and J. W. Golden (2019) Modification of RSF1010-based broad-host-range plasmids for improved conjugation and cyanobacterial bioprospecting. iScience. 20: 216–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ng, A. H., B. M. Berla, and H. B. Pakrasi (2015) Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 81: 6857–6863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sengupta, A., A. V. Sunder, S. V. Sohoni, and P. P. Wangikar (2019) Fine-tuning native promoters of Synechococcus elongatus PCC 7942 dxpression. ACS Synth. Biol. 8: 1219–1223.

    Article  CAS  PubMed  Google Scholar 

  107. Vogel, A. I. M., R. Lale, and M. F. Hohmann-Marriott (2017) Streamlining recombination-mediated genetic engineering by validating three neutral integration sites in Synechococcus sp. PCC 7002. J. Biol. Eng. 11:19.

    Google Scholar 

  108. Wang, M., G. Luan, and X. Lu (2019) Systematic identification of a neutral site on chromosome of Synechococcus sp. PCC7002, a promising photosynthetic chassis strain. J Biotechnol. 295: 37–40.

    Article  CAS  PubMed  Google Scholar 

  109. Lee, T. S., R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee, and J. D. Keasling (2011) BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J. Biol. Eng. 5: 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kang, M. K., J. Lee, Y. Urn, T. S. Lee, M. Bott, S. J. Park, and H. M. Woo (2014) Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Appl. Microbiol. Biotechnol. 98: 5991–6002.

    Article  CAS  PubMed  Google Scholar 

  111. Jin, H., Y. Wang, A. Idoine, and D. Bhaya (2018) Construction of a shuttle vector using an endogenous plasmid from the cyanobacterium Synechocystis sp. PCC6803. Front. Microbiol. 9: 1662.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Vasudevan, R., G. A. R. Gale, A. A. Schiavon, A. Puzorjov, J. Malin, M. D. Gillespie, K. Vavitsas, V. Zulkower, B. Wang, C. J. Howe, D. J. Lea-Smith, and A. J. McCormick (2019) CyanoGate: A Modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant Physiol. 180: 39–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qi, L. S., M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152: 1173–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yao, L., I. Cengic, J. Anfelt, and E. P. Hudson (2016) Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth. Biol. 5: 207–212.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, E., X. Lv, W. Xie, P. Zhou, Y. Zhu, Z. Yao, C. Yang, X. Yang, L. Ye, and H. Yu (2017) Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metab. Eng. 39: 257–266.

    Article  CAS  PubMed  Google Scholar 

  116. Gordon, G. C., T. C. Korosh, J. C. Cameron, A. L. Markley, M. B. Begemann, and B. F. Pfleger (2016) CRISPR interference as a titratable, trans -acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab. Eng 38: 170–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Higo, A., A. Isu, Y. Fukaya, and T. Hisabori (2017) Designing synthetic flexible gene regulation networks using RNA devices in cyanobacteria. ACS Synth. Biol. 6: 55–61.

    Article  CAS  PubMed  Google Scholar 

  118. Kaczmarzyk, D., I. Cengic, L. Yao, and E. P. Hudson (2018) Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab. Eng. 45: 59–66.

    Article  CAS  PubMed  Google Scholar 

  119. Knoot, C. J., S. Biswas, and H. B. Pakrasi (2019) Tunable repression of key photosynthetic processes using Casl2a CRISPR interference in the fast-growing cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth. Biol. 9: 132–143.

    Article  PubMed  CAS  Google Scholar 

  120. Xiao, Y., S. Wang, S. Rommelfanger, A. Balassy, C. Barba-Ostria, P. Gu, J. M. Galazka, and F. Zhang (2018) Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol. Bioeng. 115: 2305–2314.

    Article  CAS  PubMed  Google Scholar 

  121. Behler, J., D. Vijay, W. R. Hess, and M. K. Akhtar (2018) CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends Biotechnol. 36: 996–1010.

    Article  CAS  PubMed  Google Scholar 

  122. Ungerer, J. and H. B. Pakrasi (2016) Cpfl is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci. Rep. 6: 39681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Behler, J., K. Sharma, V. Reimann, A. Wilde, H. Urlaub, and W. R. Hess (2018) The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR-Cas subtype III-Bv system. Nat. Microbiol. 3: 367–377.

    Article  CAS  PubMed  Google Scholar 

  124. Moon, S. B., D. Y. Kim, J. H. Ko, J. S. Kim, and Y. S. Kim (2019) Improving CRISPR genome editing by engineering guide RNAs. Trends Biotechnol. 37: 870–881.

    Article  CAS  PubMed  Google Scholar 

  125. Anzalone, A. V., P. B. Randolph, J. R. Davis, A. A. Sousa, L. W. Koblan, J. M. Levy, P. J. Chen, C. Wilson, G. A. Newby, A. Raguram, and D. R. Liu (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 576: 149–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, K., Y. Wang, R. Zhang, H. Zhang, and C. Gao (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70: 667–697.

    Article  CAS  PubMed  Google Scholar 

  127. Kim, J. S. (2018) Precision genome engineering through adenine and cytosine base editing. Nat. Plants. 4: 148–151.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, X., J. Wang, Q. Cheng, X. Zheng, G. Zhao, and J. Wang (2017) Multiplex gene regulation by CRISPR-ddCpfl. Cell Discov. 3: 17018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kleinstiver, B. P., A. A. Sousa, R. T. Walton, Y. E. Tak, J. Y. Hsu, K. Clement, M. M. Welch, J. E. Horng, J. Malagon-Lopez, I. Scarfè, M. V. Maus, L. Pinello, M. J. Aryee, and J. K. Joung (2019) Engineered CRISPR-Cas 12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37: 276–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Choi, S. Y. and H. M. Woo (2020) CRISPRi-dCasl2a: A dCasl2a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria. ACS Synth. Biol. 9: 2351–2361.

    Article  CAS  PubMed  Google Scholar 

  131. Case, A. E. and S. Atsumi (2016) Cyanobacterial chemical production. J. Biotechnol. 231: 106–114.

    Article  CAS  PubMed  Google Scholar 

  132. Carroll, A. L., A. E. Case, A. Zhang, and S. Atsumi (2018) Metabolic engineering tools in model cyanobacteria. Metab. Eng. 50: 47–56.

    Article  CAS  PubMed  Google Scholar 

  133. Johnson, T. J., C. Halfmann, J. D. Zahler, R. Zhou, and W. R. Gibbons (2016) Increasing the tolerance of filamentous cyanobacteria to next-generation biofuels via directed evolution. Algal Res. 18:250–256.

    Article  Google Scholar 

  134. Markley, A. L., M. B. Begemann, R. E. Clarke, G. C. Gordon, and B. F. Pfleger (2015) Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth. Biol. 4: 595–603.

    Article  CAS  PubMed  Google Scholar 

  135. Thiel, K., E. Mulaku, H. Dandapani, C. Nagy, E. M. Aro, and P. Kallio (2018) Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microb. Cell Fact. 17: 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Swarts, D. C. and M. Jinek (2018) Cas9 versus Casl2a/Cpfl: Structure—function comparisons and implications for genome editing. Wiley Interdiscip Rev. RNA. 9: e1481.

    Article  CAS  PubMed  Google Scholar 

  137. Xue, Y. and Q. He (2015) Cyanobacteria as cell factories to produce plant secondary metabolites. Front. Bioeng. Biotechnol. 3:57.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fagundes, M. B., R. G. Vendruscolo, M. M. Maroneze, J. S. Barin, C. R. de Menezes, L. Q. Zepka, E. Jacob-Lopes, and R. Wagner (2019) Towards a sustainable route for the production of squalene using cyanobacteria. Waste Biomass Valor. 10: 1295–1302.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sun Young Choi, Mieun Lee and Jigyeong Son for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Min Woo.

Additional information

Author Contribution Statement|N.P. and H.M.W designed the outline of the article. N.P., J.-I.C, and HMW analyzed the references. N.P., J.-I.C, A.I. and HMW wrote the manuscript. All authors read and approved the manuscript.

Funding|This work was supported by Korea CCS R&D Center (KCRC) (2017M1A8A1072034) and Basic Science Research Program (2020R1F1A1048292) by the National Research Foundation of Korea, funded by the Korean Government (Ministry of Science and ICT). In addition, J.-I.C. received support from the Golden Seed Project (213008-05-5-SB910) grant and was funded by the Ministry of Agriculture and the Ministry of Oceans and Fisheries. N.P is the recipient of a student fellowship from the Royal Golden Jubilee Ph.D. Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattharaprachayakul, N., Choi, Ji., Incharoensakdi, A. et al. Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. Biotechnol Bioproc E 25, 829–847 (2020). https://doi.org/10.1007/s12257-019-0447-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0447-1

Keywords

Navigation