Skip to main content
Log in

A Brief Overview of Recent Engineering Approaches for Intervertebral Disc Regeneration Using Adipose Derived Mesenchymal Stem Cell Administration

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Intervertebral disc (IVD) degeneration and subsequent low back pain (LBP) are major orthopedic diseases worldwide. IVD herniation could be caused by an accidental trauma or posture imbalance. When the symptoms of LBP for patients worsen, surgical procedures such as discectomy are necessary. However, these orthopedic incisions often require secondary surgery to patients. Therefore, the need for improved engineering and clinical development to overcome these drawbacks should be emphasized, and IVD therapy using progenitor stem cell administration is recently in the spotlight. Among various cell sources, adipose derived mesenchymal stem cells (ADSCs) are considered a potential alternative cell source to replace conventional bone marrow-derived stem cells for allograft transplantation and tissue engineering applications. In addition, a proper modulation of the growth environment and biological additives along with novel scaffold platforms successfully control the differentiation of ADSCs. Furthermore, recent clinical trials have shown feasible outcomes in systematic IVD repair using stem cell therapies. Taken together, this review summarizes (1) stem cell-based tissue engineering strategies for effective IVD regeneration and (2) clinical follow-up through stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vos, T., A. D. Flaxman, M. Naghavi, R. Lozano, C. Michaud, M. Ezzati, K. Shibuya, J. A. Salomon, S. Abdalla, V. Aboyans, J. Abraham, I. Ackerman, R. Aggarwal, S. Y. Ahn, M. K. Ali, M. Alvarado, H. R. Anderson, L. M. Anderson, K. G. Andrews, C. Atkinson, L. M. Baddour, A. N. Bahalim, S. Barker-Collo, L. H. Barrero, D. H. Bartels, M. G. Basáñez, A. Baxter, M. L. Bell, E. J. Benjamin, D. Bennett, E. Bernabé, K. Bhalla, B. Bhandari, B. Bikbov, A. B. Abdulhak, G. Birbeck, J. A. Black, H. Blencowe, J. D. Blore, F. Blyth, I. Bolliger, A. Bonaventure, S. Boufous, R. Bourne, M. Boussinesq, T. Braithwaite, C. Brayne, L. Bridgett, S. Brooker, P. Brooks, T. S. Brugha, C. Bryan-Hancock, C. Bucello, R. Buchbinder, G. Buckle, C. M. Budke, M. Burch, P. Burney, R. Burstein, B. Calabria, B. Campbell, C. E. Canter, H. Carabin, J. Carapetis, L. Carmona, C. Cella, F. Charlson, H. Chen, A. T. A. Cheng, D. Chou, S. S. Chugh, L. E. Coffeng, S. D. Colan, S. Colquhoun, K. E. Colson, J. Condon, M. D. Connor, L. T. Cooper, M. Corriere, M. Cortinovis, K. C. de Vaccaro, W. Couser, B. C. Cowie, M. H. Criqui, M. Cross, K. C. Dabhadkar, M. Dahiya, N. Dahodwala, J. Damsere-Derry, G. Danaei, A. Davis, D. De Leo, L. Degenhardt, R. Dellavalle, A. Delossantos, J. Denenberg, S. Derrett, D. C. Des Jarlais, S. D. Dharmaratne, M. Dherani, C. Diaz-Torne, H. Dolk, E. R. Dorsey, T. Driscoll, H. Duber, B. Ebel, K. Edmond, A. Elbaz, S. E. Ali, H. Erskine, P. J. Erwin, P. Espindola, S. E. Ewoigbokhan, F. Farzadfar, V. Feigin, D. T. Felson, A. Ferrari, C. P. Ferri, E. M. Fèvre, M. M. Finucane, S. Flaxman, L. Flood, K. Foreman, M. H. Forouzanfar, F. G. R. Fowkes, R. Franklin, M. Fransen, M. K. Freeman, B. J. Gabbe, S. E. Gabriel, E. Gakidou, H. A. Ganatra, B. Garcia, F. Gaspari, R. F. Gillum, G. Gmel, R. Gosselin, R. Grainger, J. Groeger, F. Guillemin, D. Gunnell, R. Gupta, J. Haagsma, H. Hagan, Y. A. Halasa, W. Hall, D. Haring, J. M. Haro, J. E. Harrison, R. Havmoeller, R. J. Hay, H. Higashi, C. Hill, B. Hoen, H. Hoffman, P. J. Hotez, D. Hoy, J. J. Huang, S. E. Ibeanusi, K. H. Jacobsen, S. L. James, D. Jarvis, R. Jasrasaria, S. Jayaraman, N. Johns, J. B. Jonas, G. Karthikeyan, N. Kassebaum, N. Kawakami, A. Keren, J. P. Khoo, C. H. King, L. M. Knowlton, O. Kobusingye, A. Koranteng, R. Krishnamurthi, R. Lalloo, L. L. Laslett, T. Lathlean, J. L. Leasher, Y. Y. Lee, J. Leigh, S. S. Lim, E. Limb, J. K. Lin, M. Lipnick, S. E. Lipshultz, W. Liu, M. Loane, S. L. Ohno, R. Lyons, J. Ma, J. Mabweijano, M. F. MacIntyre, R. Malekzadeh, L. Mallinger, S. Manivannan, W. Marcenes, L. March, D. J. Margolis, G. B. Marks, R. Marks, A. Matsumori, R. Matzopoulos, B. M. Mayosi, J. H. McAnulty, M. M. McDermott, N. McGill, J. McGrath, M. E. Medina-Mora, M. Meltzer, G. A. Mensah, T. R. Merriman, A. C. Meyer, V. Miglioli, M. Miller, T. R. Miller, P. B. Mitchell, A. O. Mocumbi, T. E. Moffitt, A. A. Mokdad, L. Monasta, M. Montico, M. Moradi-Lakeh, A. Moran, L. Morawska, R. Mori, M. E. Murdoch, M. K. Mwaniki, K. Naidoo, M. N. Nair, L. Naldi, K. M. V. Narayan, P. K. Nelson, R. G. Nelson, M. C. Nevitt, C. R. Newton, S. Nolte, P. Norman, R. Norman, M. O’Donnell, S. O’Hanlon, C. Olives, S. B. Omer, K. Ortblad, R. Osborne, D. Ozgediz, A. Page, B. Pahari, J. D. Pandian, A. P. Rivero, S. B. Patten, N. Pearce, R. P. Padilla, F. Perez-Ruiz, N. Perico, K. Pesudovs, D. Phillips, M. R. Phillips, K. Pierce, S. Pion, G. V. Polanczyk, S. Polinder, C. A. Pope 3rd, S. Popova, E. Porrini, F. Pourmalek, M. Prince, R. L. Pullan, K. D. Ramaiah, D. Ranganathan, H. Razavi, M. Regan, J. T. Rehm, D. B. Rein, G. Remuzzi, K. Richardson, F. P. Rivara, T. Roberts, C. Robinson, F. R. De Leòn, L. Ronfani, R. Room, L. C. Rosenfeld, L. Rushton, R. L. Sacco, S. Saha, U. Sampson, L. Sanchez-Riera, E. Sanman, D. C. Schwebel, J. G. Scott, M. Segui-Gomez, S. Shahraz, D. S. Shepard, H. Shin, R. Shivakoti, D. Singh, G. M. Singh, J. A. Singh, J. Singleton, D. A. Sleet, K. Sliwa, E. Smith, J. L. Smith, N. J. C. Stapelberg, A. Steer, T. Steiner, W. A. Stolk, L. J. Stovner, C. Sudfeld, S. Syed, G. Tamburlini, M. Tavakkoli, H. R. Taylor, J. A. Taylor, W. J. Taylor, B. Thomas, W. M. Thomson, G. D. Thurston, I. M. Tleyjeh, M. Tonelli, J. A. Towbin, T. Truelsen, M. K. Tsilimbaris, C. Ubeda, E. A. Undurraga, M. J. van der Werf, J van Os, M. S. Vavilala, N. Venketasubramanian, M. Wang, W. Wang, K. Watt, D. J. Weatherall, M. A. Weinstock, R. Weintraub, M. G. Weisskopf, M. M. Weissman, R. A. White, H. Whiteford, S. T. Wiersma, J. D. Wilkinson, H. C. Williams, S. R. M. Williams, E. Witt, F. Wolfe, A. D. Woolf, S. Wulf, P. H. Yeh, A. K. M. Zaidi, Z. J. Zheng, D. Zonies, A. D. Lopez, C. J. L. Murray, M. A. AlMazroa, and Z. A. Memish (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380: 2163–2196.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Serra, T., C. Capelli, R. Toumpaniari, I. R. Orriss, J. J. H. Leong, K. Dalgarno, and D. M. Kalaskar (2016) Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment. Biofabrication. 8: 035001.

    Article  CAS  PubMed  Google Scholar 

  3. Malandrino, A., J. Noailly, and D. Lacroix (2011) The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. PLoS Comput. Biol. 7: e1002112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clouet, J., C. Vinatier, C. Merceron, M. Pot-Vaucel, O. Hamel, P. Weiss, G. Grimandi, and J. Guicheux (2009) The intervertebral disc: from pathophysiology to tissue engineering. Joint Bone Spine. 76: 614–618.

    Article  PubMed  Google Scholar 

  5. Anderson, D. G. and C. Tannoury (2005) Molecular pathogenic factors in symptomatic disc degeneration. Spine J. 5: 260S–266S.

    Article  PubMed  Google Scholar 

  6. Gu, W., Q. Zhu, X. Gao, and M. D. Brown (2014) Simulation of the progression of intervertebral disc degeneration due to decreased nutritional supply. Spine (Phila Pa 1976). 39: E1411–E1417.

    Article  PubMed Central  Google Scholar 

  7. O’Halloran, D. M. and A. S. Pandit (2007) Tissue-engineering approach to regenerating the intervertebral disc. Tissue Eng. 13: 1927–1954.

    Article  PubMed  Google Scholar 

  8. Pattappa, G., Z. Li, M. Peroglio, N. Wismer, M. Alini, and S. Grad (2012) Diversity of intervertebral disc cells: phenotype and function. J. Anat. 221: 480–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raj, P. P. (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract. 8: 18–44.

    Article  PubMed  Google Scholar 

  10. Smith, L. J., N. L. Nerurkar, K. S. Choi, B. D. Harfe, and D. M. Elliott (2011) Degeneration and regeneration of the intervertebral disc: lessons from development. Dis. Model. Mech. 4: 31–41.

    Article  PubMed  CAS  Google Scholar 

  11. Adams, M. A., P. Lama, U. Zehra, and P. Dolan (2015) Why do some intervertebral discs degenerate, when others (in the same spine) do not?. Clin. Anat. 28: 195–204.

    Article  PubMed  Google Scholar 

  12. Freemont, A. J., A. Watkins, C. Le Maitre, M. Jeziorska, and J. A. Hoyland (2002) Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J. Pathol. 196: 374–379.

    Article  CAS  PubMed  Google Scholar 

  13. Kepler, C. K., R. K. Ponnappan, C. A. Tannoury, M. V. Risbud, and D. G. Anderson (2013) The molecular basis of intervertebral disc degeneration. Spine J. 13: 318–330.

    Article  PubMed  Google Scholar 

  14. Zhang, Y., H. S. An, C. Tannoury, E. J. M. A. Thonar, M. K. Freedman, and D. G. Anderson (2008) Biological treatment for degenerative disc disease: implications for the field of physical medicine and rehabilitation. Am. J. Phys. Med. Rehabil. 87: 694–702.

    Article  PubMed  Google Scholar 

  15. Wai, E. K., S. Rodriguez, S. Dagenais, and H. Hall (2008) Evidence-informed management of chronic low back pain with physical activity, smoking cessation, and weight loss. Spine J. 8: 195–202.

    Article  PubMed  Google Scholar 

  16. Slade, S. C. and J. L. Keating (2007) Unloaded movement facilitation exercise compared to no exercise or alternative therapy on outcomes for people with nonspecific chronic low back pain: a systematic review. J. Manipulative Physiol. Ther. 30: 301–311.

    Article  PubMed  Google Scholar 

  17. Kelly, M. P., J. M. Mok, R. F. Frisch, and B. K. Tay (2011) Adjacent segment motion after anterior cervical discectomy and fusion versus Prodisc-c cervical total disk arthroplasty: analysis from a randomized, controlled trial. Spine (Phila Pa 1976). 36: 1171–1179.

    Article  Google Scholar 

  18. Ren, C., Y. Song, Y. Xue, and X. Yang (2014) Mid- to long-term outcomes after cervical disc arthroplasty compared with anterior discectomy and fusion: a systematic review and meta-analysis of randomized controlled trials. Eur. Spine J. 23: 1115–1123.

    Article  PubMed  Google Scholar 

  19. Kim, M. S., K. W. Park, C. Hwang, Y. K. Lee, K. H. Koo, B. S. Chang, C. K. Lee, and D. H. Lee (2009) Recurrence rate of lumbar disc herniation after open discectomy in active young men. Spine (Phila Pa 1976). 34: 24–29.

    Article  Google Scholar 

  20. Zhu, Y., T. Liu, K. Song, X. Fan, X. Ma, and Z. Cui (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct. 26: 664–675.

    Article  CAS  PubMed  Google Scholar 

  21. Im, G. I. (2017) Bone marrow-derived stem/stromal cells and adipose tissue-derived stem/stromal cells: Their comparative efficacies and synergistic effects. J. Biomed. Mater. Res., A. 105: 2640–2648.

    Article  CAS  Google Scholar 

  22. Sakai, D. and G. B. J. Andersson (2015) Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat. Rev. Rheumatol. 11: 243–256.

    Article  PubMed  Google Scholar 

  23. Yim, R. L. H., J. T. Y. Lee, C. H. Bow, B. Meij, V. Leung, K. M. C. Cheung, P. Vavken, and D. Samartzis (2014) A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev. 23: 2553–2567.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li, P. and X. Guo (2018) A review: therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration. Stem Cell Res. Ther. 9: 302.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eirin, A., X. Y. Zhu, J. D. Krier, H. Tang, K. L. Jordan, J. P. Grande, A. Lerman, S. C. Textor, and L. O. Lerman (2012) Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells. 30: 1030–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levi, B. and M. T. Longaker (2011) Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells. 29: 576–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zanetti, A. S., C. Sabliov, J. M. Gimble, and D. J. Hayes (2013) Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J. Biomed. Mater. Res. Part B Appl Biomater. 101: 187–199.

    Article  CAS  Google Scholar 

  28. Veronesi, F., M. Maglio, M. Tschon, N. N. Aldini, and M. Fini (2014) Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies. J. Biomed. Mater. Res. A. 102: 2448–2466.

    Article  PubMed  CAS  Google Scholar 

  29. Goldberg, A., K. Mitchell, J. Soans, L. Kim, and R. Zaidi (2017) The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J. Orthop. Surg. Res. 12: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  30. ter Huurne, M., R. Schelbergen, R. Blattes, A. Blom, W. de Munter, L. C. Grevers, J. Jeanson, D. Noel, L. Casteilla, C. Jorgensen, W. van den Berg, and P. L. E. M. van Lent (2012) Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 64: 3604–3613.

    Article  CAS  PubMed  Google Scholar 

  31. Shi, M., Z. W. Liu, and F. S. Wang (2011) Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin. Exp. Immunol. 164: 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, Q., Y. Zhao, Q. Xia, B. Xu, X. Ma, Y. Liu, Y. Hu, H. Li, J. Miao, T. Wang, J. Ma, and X. Sun (2013) Novel cartilage-derived biomimetic scaffold for human nucleus pulposus regeneration: a promising therapeutic strategy for symptomatic degenerative disc diseases. Orthop. Surg. 5: 60–63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gajendiran, M., J. Choi, S. J. Kim, K. Kim, H. Shin, H. J. Koo, and K. Kim (2017) Conductive biomaterials for tissue engineering applications. J. Ind. Eng. Chem. 51: 12–26.

    Article  CAS  Google Scholar 

  34. Xie, J., S. M. Willerth, X. Li, M. R. Macewan, A. Rader, S. E. Sakiyama-Elbert, and Y. Xia (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 30: 354–362.

    Article  CAS  PubMed  Google Scholar 

  35. Park, J., S. Kim, and K. Kim (2018) Bone morphogenetic protein-2 associated multiple growth factor delivery for bone tissue regeneration. J. Pharm. Investig. 48: 187–197.

    Article  CAS  Google Scholar 

  36. Kim, S., S. Lee, and K. Kim (2018) Bone tissue engineering strategies in co-delivery of bone morphogenetic protein-2 and biochemical signaling factors. Adv. Exp. Med. Biol. 1078: 233–244.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, K., W. C. W. Chen, Y. Heo, and Y. Wang (2016) Polycations and their biomedical applications. Prog. Polym. Sci. 60: 18–50.

    Article  CAS  Google Scholar 

  38. Li, H., Y. Tao, C. Liang, B. Han, F. Li, G. Chen, and Q. Chen (2013) Influence of hypoxia in the intervertebral disc on the biological behaviors of rat adipose- and nucleus pulposus-derived mesenchymal stem cells. Cells Tissues Organs. 198: 266–277.

    Article  CAS  PubMed  Google Scholar 

  39. Tian, K. Guan, G. Zhao, J. Shan, and D. Ren (2014) Differentiation of adipose-derived stem cells toward nucleus pulposus-like cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro. Chin. Med. J (Engl). 127: 314–321.

    PubMed  Google Scholar 

  40. Liang, C., H. Li, Y. Tao, X. Zhou, F. Li, G. Chen, and Q. Chen (2012) Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc. J. Transl. Med. 10: 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore, Y. R., D. P. Dickinson, and U. M. E. Wikesjo (2010) Growth/differentiation factor-5: a candidate therapeutic agent for periodontal regeneration? A review of pre-clinical data. J. Clin. Periodontol. 37: 288–298.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, W., D. Rigueur, and K. M. Lyons (2014) TGFbeta signaling in cartilage development and maintenance. Birth Defects Res. Part C Embryo Today. 102: 37–51.

    Article  CAS  Google Scholar 

  43. Chen, W. H., W. C. Lo, J. J. Lee, C. H. Su, C. T. Lin, H. Y. Liu, T. W. Lin, W. C. Lin, T. Y. Huang, and W. P. Deng (2006) Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-beta1 in platelet-rich plasma. J. Cell. Physiol. 209: 744–754.

    Article  CAS  PubMed  Google Scholar 

  44. Clarke, L. E., J. C. McConnell, M. J. Sherratt, B. Derby, S. M. Richardson, and J. A. Hoyland (2014) Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Res. Ther. 16: R67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cho, H., D. Kim, and K. Kim (2018) Engineered co-culture strategies using stem cells for facilitated chondrogenic differentiation and cartilage repair. Biotechnol. Bioprocess Eng. 23: 261–270.

    Article  CAS  Google Scholar 

  46. Oh, M., Y. J. Kim, Y. J. Son, H. S. Yoo, and J. H. Park (2017) Promotive effects of human induced pluripotent stem cell-conditioned medium on the proliferation and migration of dermal fibroblasts. Biotechnol. Bioprocess Eng. 22: 561–568.

    Article  CAS  Google Scholar 

  47. Dai, J., H. Wang, G. Liu, Z. Xu, F. Li, and H. Fang (2014) Dynamic compression and co-culture with nucleus pulposus cells promotes proliferation and differentiation of adipose-derived mesenchymal stem cells. J. Biomech. 47: 966–972.

    Article  PubMed  Google Scholar 

  48. Yang, S. H., C. C. Wu, T. T. F. Shih, Y. H. Sun, and F. H. Lin (2008) In vitro study on interaction between human nucleus pulposus cells and mesenchymal stem cells through paracrine stimulation. Spine (Phila Pa 1976). 33: 1951–1957.

    Article  Google Scholar 

  49. Verrecchia, F. and A. Mauviel (2004) TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal. 16: 873–880.

    Article  CAS  PubMed  Google Scholar 

  50. Lan, W. R., S. Pan, H. Y. Li, C. Sun, X. Chang, K. Lu, C. Q. Jiang, R. Zuo, Y. Zhou, and C. Q. Li (2019) Inhibition of the Notch1 pathway promotes the effects of nucleus pulposus cell-derived exosomes on the differentiation of mesenchymal stem cells into nucleus pulposus-like cells in rats. Stem Cells Int. 2019: 8404168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jin, E. S., J. Min, S. R. Jeon, K. H. Choi, and J. H. Jeong (2013) Analysis of molecular expression in adipose tissue-derived mesenchymal stem cells: prospects for use in the treatment of intervertebral disc degeneration. J. Korean Neurosurg. Soc. 53: 207–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi, E. H., H. Park, K. S. Park, K. S. Park, B. S. Kim, I. B. Han, D. A. Shin, and S. H. Lee (2011) Effect of nucleus pulposus cells having different phenotypes on chondrogenic differentiation of adipose-derived stromal cells in a coculture system using porous membranes. Tissue Eng. Part A. 17: 2445–2451.

    Article  CAS  PubMed  Google Scholar 

  53. Song, K., T. Gu, F. Shuang, J. Tang, D. Ren, J. Qin, and S. Hou (2015) Adipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs. Mol. Med. Rep. 12: 4664–4668.

    Article  CAS  PubMed  Google Scholar 

  54. Xu, J., D. L. Qi, X. J. Pang, and C. W. Jing (2015) Rabbit nucleus pulposus cells facilitate differentiation of adipose-derived stem cells into nucleus pulposus-like cells. Indian J. Cancer. 52Suppl 1: 17–21.

    Google Scholar 

  55. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher (2006) Matrix elasticity directs stem cell lineage specification. Cell. 126: 677–689.

    Article  CAS  PubMed  Google Scholar 

  56. Carlson, A. L., C. A. Florek, J. J. Kim, T. Neubauer, J. C. Moore, R. I. Cohen, J. Kohn, M. Grumet, and P. V. Moghe (2012) Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments. FASEB J. 26: 3240–3251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Naveena, N., J. Venugopal, R. Rajeswari, S. Sundarrajan, R. Sridhar, M. Shayanti, S. Narayanan, and S. Ramakrishna (2012) Biomimetic composites and stem cells interaction for bone and cartilage tissue regeneration. J. Mater. Chem. 22: 5239–5253.

    Article  CAS  Google Scholar 

  58. Schultz, K. M., K. A. Kyburz, and K. S. Anseth (2015) Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc. Natl. Acad. Sci. USA. 112: E3757–E3764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rychly, J. and B. J. Nebe (2013) Cell-material interaction. BioNanoMaterials. 14: 153–160.

    Article  Google Scholar 

  60. Schaap-Oziemlak, A. M., P. T. Kühn, T. G. van Kooten, and P. van Rijn (2014) Biomaterial-stem cell interactions and their impact on stem cell response. RSC Adv. 4: 53307–53320.

    Article  CAS  Google Scholar 

  61. Zheng, X. F., S. B. Lu, W. G. Zhang, S. Y. Liu, J. X. Huang, and Q. Y. Guo (2011) Mesenchymal stem cells on a decellularized cartilage matrix for cartilage tissue engineering. Biotechnol. Bioprocess Eng. 16: 593–602.

    Article  CAS  Google Scholar 

  62. Mern, D. S., A. Beierfuss, C. Thome, and A. A. Hegewald (2014) Enhancing human nucleus pulposus cells for biological treatment approaches of degenerative intervertebral disc diseases: a systematic review. J. Tissue Eng. Regen. Med. 8: 925–936.

    Article  CAS  PubMed  Google Scholar 

  63. Miyamoto, T., T. Muneta, T. Tabuchi, K. Matsumoto, H. Saito, K. Tsuji, and I. Sekiya (2010) Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res. Ther. 12: R206.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Aladin, D. M. K., K. M. C. Cheung, A. H. W. Ngan, D. Chan, V. Y. L. Leung, C. T. Lim, K. D. K. Luk, and W. W. Lu (2010) Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. J. Orthop. Res. 28: 497–502.

    Article  CAS  PubMed  Google Scholar 

  65. Hsieh, A. H. and J. D. Twomey (2010) Cellular mechanobiology of the intervertebral disc: New directions and approaches. J. Biomech. 43: 137–145.

    Article  PubMed  Google Scholar 

  66. Gan, J. C., P. Ducheyne, E. J. Vresilovic, W. Swaim, and I. M. Shapiro (2003) Intervertebral disc tissue engineering I: characterization of the nucleus pulposus. Clin. Orthop. Relat. Res. 305–314.

  67. Sowa, G., G. Vadala, R. Studer, J. Kompel, C. Iucu, H. Georgescu, L. Gilbertson, and J. Kang (2008) Characterization of intervertebral disc aging: longitudinal analysis of a rabbit model by magnetic resonance imaging, histology, and gene expression. Spine (Phila Pa 1976). 33: 1821–1828.

    Article  Google Scholar 

  68. Zhang, Y. G., Z. M. Sun, J. T. Liu, S. J. Wang, F. L. Ren, and X. Guo (2009) Features of intervertebral disc degeneration in rat’s aging process. J. Zhejiang Univ. Sci. B. 10: 522–527.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tao, Y., X. Zhou, D. Liu, H. Li, C. Liang, F. Li, and Q. Chen (2016) Proportion of collagen type II in the extracellular matrix promotes the differentiation of human adipose-derived mesenchymal stem cells into nucleus pulposus cells. Biofactors. 42: 212–223.

    CAS  PubMed  Google Scholar 

  70. Mercuri, J., C. Addington, R. Pascal 3rd, S. Gill, and D. Simionescu (2014) Development and initial characterization of a chemically stabilized elastin-glycosaminoglycan-collagen composite shape-memory hydrogel for nucleus pulposus regeneration. J. Biomed. Mater. Res. A. 102: 4380–4393.

    PubMed  Google Scholar 

  71. Chun, H. J., Y. S. Kim, B. K. Kim, E. H. Kim, J. H. Kim, B. R. Do, S. J. Hwang, J. Y. Hwang, and Y. K. Lee (2012) Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs. World Neurosurg. 78: 364–371.

    Article  PubMed  Google Scholar 

  72. Kim, Y., S. H. Lee, W. H. Kim, and O. K. Kweon (2016) Transplantation of adipose derived mesenchymal stem cells for acute thoracolumbar disc disease with no deep pain perception in dogs. J. Vet. Sci. 17: 123–126.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhu, J., K. Xia, W. Yu, Y. Wang, J. Hua, B. Liu, Z. Gong, J. Wang, A. Xu, Z. You, Q. Chen, F. Li, H. Tao, and C. Liang (2019) Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomater. 86: 300–311.

    Article  CAS  PubMed  Google Scholar 

  74. Johnson, N. R., M. Kruger, K. P. Goetsch, P. Zilla, D. Bezuidenhout, Y. Wang, and N. H. Davies (2015) Coacervate delivery of growth factors combined with a degradable hydrogel preserves heart function after myocardial infarction. ACS Biomater. Sci. Eng. 1: 753–759.

    Article  CAS  PubMed  Google Scholar 

  75. Chu, H., C. W. Chen, J. Huard, and Y. Wang (2013) The effect of a heparin-based coacervate of fibroblast growth factor-2 on scarring in the infarcted myocardium. Biomaterials. 34: 1747–1756.

    Article  CAS  PubMed  Google Scholar 

  76. Wang, Z., D. W. Long, Y. Huang, S. Khor, X. Li, X. Jian, and Y. Wang (2017) Fibroblast growth factor-1 released from a heparin coacervate improves cardiac function in a mouse myocardial infarction model. ACS Biomater. Sci. Eng. 3: 1988–1999.

    Article  CAS  PubMed  Google Scholar 

  77. Awada, H. K., N. R. Johnson, and Y. Wang (2014) Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects. Macromol. Biosci. 14: 679–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chu, H., J. Gao, C. W. Chen, J. Huard, and Y. Wang (2011) Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proc. Natl. Acad. Sci. USA. 108: 13444–13449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, S., J. Kim, M. Gajendiran, M. Yoon, M. P. Hwang, Y. Wang, B. J. Kang, and K. Kim (2018) Enhanced skull bone regeneration by sustained release of BMP-2 in interpenetrating composite hydrogels. Biomacromolecules. 19: 4239–4249.

    Article  CAS  PubMed  Google Scholar 

  80. Kim, S., J. Lee, M. P. Hwang, Y. Wang, and K. Kim (2019) Influence of fiber architecture and growth factor formulation on osteoblastic differentiation of mesenchymal stem cells in coacervate-coated electrospun fibrous scaffolds. J. Ind. Eng. Chem. 79: 236–244

    Article  CAS  Google Scholar 

  81. Johnson, N. R. and Y. Wang (2015) Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds. Wound Repair Regen. 23: 591–600.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee, M. S., T. Ahmad, J. Lee, H. K. Awada, Y. Wang, K. Kim, H. Shin, and H. S. Yang (2017) Dual delivery of growth factors with coacervate-coated poly(lactic-co-glycolic acid) nanofiber improves neovascularization in a mouse skin flap model. Biomaterials. 124: 65–77.

    Article  CAS  PubMed  Google Scholar 

  83. Park, U. and K. Kim (2018) Multiple growth factor delivery for skin tissue engineering applications. Biotechnol. Bioprocess Eng. 22: 659–670.

    Article  CAS  Google Scholar 

  84. Liang, C., H. Li, Y. Tao, L. Peng, J. Gao, J. Wu, F. Li, J. Hua, and Q. Chen (2013) Dual release of dexamethasone and TGF-beta3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model. Acta Biomater. 9: 9423–9433.

    Article  CAS  PubMed  Google Scholar 

  85. Tangtrongsup, S. and J. D. Kisiday (2016) Effects of dexamethasone concentration and timing of exposure on chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Cartilage. 7: 92–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Florine, E. M., R. E. Miller, R. M. Porter, C. H. Evans, B. Kurz, and A. J. Grodzinsky (2013) Effects of dexamethasone on mesenchymal stromal cell chondrogenesis and aggrecanase activity: Comparison of agarose and self-assembling peptide scaffolds. Cartilage. 4: 63–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Nazempour, A., C. R. Quisenberry, N. I. Abu-Lail, and B. J. Van Wie (2017) Enhancing adipose stem cell chondrogenesis: A study on the roles of dexamethasone, transforming growth factor β3 and ascorbate supplements and their combination. J. Stem Cell Ther. Transplant. 1: 28–51.

    Article  Google Scholar 

  88. Bulman, S. E., V. Barron, C. M. Coleman, and F. Barry (2013) Enhancing the mesenchymal stem cell therapeutic response: cell localization and support for cartilage repair. Tissue Eng. Part B Rev. 19: 58–68.

    Article  CAS  PubMed  Google Scholar 

  89. Parisi-Amon, A., W. Mulyasasmita, C. Chung, and S. C. Heilshorn (2013) Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Healthc. Mater. 2: 428–432.

    Article  CAS  PubMed  Google Scholar 

  90. Ganey, T., W. C. Hutton, T. Moseley, M. Hedrick, and H. J. Meisel (2009) Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine (Phila Pa 1976). 34: 2297–2304.

    Article  Google Scholar 

  91. Haufe, S. M. W. and A. R. Mork (2006) Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral discs. Stem Cells Dev. 15: 136–137.

    Article  PubMed  Google Scholar 

  92. Hohaus, C., T. M. Ganey, Y. Minkus, and H. J. Meisel (2008) Cell transplantation in lumbar spine disc degeneration disease. Eur. Spine J. 17Suppl 4: 492–503.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yoshikawa, T., Y. Ueda, K. Miyazaki, M. Koizumi, and Y. Takakura (2010) Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila Pa 1976). 35: E475–E480.

    Article  Google Scholar 

  94. Orozco, L., R. Soler, C. Morera, M. Alberca, A. Sanchez, and J. Garcia-Sancho (2011) Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 92: 822–828.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1A2C1084828) and the Incheon National University Institute of Convergence Science & Technology (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyobum Kim.

Additional information

Disclosure

The authors disclose no conflicts of interest in this work. Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kwon, O.J., Lee, J. et al. A Brief Overview of Recent Engineering Approaches for Intervertebral Disc Regeneration Using Adipose Derived Mesenchymal Stem Cell Administration. Biotechnol Bioproc E 26, 335–347 (2021). https://doi.org/10.1007/s12257-019-0346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0346-5

Keywords

Navigation