Skip to main content
Log in

Promotive effects of human induced pluripotent stem cell-conditioned medium on the proliferation and migration of dermal fibroblasts

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Fibroblasts are a major cell type in the dermis. When skin is wounded in various ways such as by abrasions, cuts or diabetic ulcer, proliferation and migration of dermal fibroblasts is necessary for cutaneous wound healing. Numerous studies have shown that adult stem cells secrete paracrine factors and these are able to promote wound healing by activating migration and proliferation of effector cells such as dermal fibroblasts. However, the paracrine factors secreted from pluripotent stem cells and the effect of these on dermal fibroblast proliferation and migration have been poorly characterized. In this study we cultured human induced pluripotent stem cells without any animal-derived components including feeder cells, and investigated the effect of stem cell-conditioned medium (iPSC-CM) on dermal fibroblast proliferation and migration. Results showed that the proliferation of mouse embryonic fibroblasts (STO cells) and human dermal fibroblasts (HDFs) were significantly stimulated by iPSC-CM. We determined that the optimal concentration of iPSC-CM in promoting the proliferation of HDFs was a 75% dilution. Scratch wound assay and transwell migration assay also demonstrated the stimulatory effect of iPSC-CM on the migration of HDFs. iPSC-CM is believed to have advantages because of the unique capabilities of iPSCs, which include infinite self-renewal, pluripotency and variety of donor cells. Thus, iPSC-CM is anticipated to be a valuable source of paracrine factors which can potentially be used for wound healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, P. (1997) Wound healing—aiming for perfect skin regeneration. Science 276: 75–81.

    Article  CAS  Google Scholar 

  2. Menke, N. B., K. R. Ward, T. M. Witten, D. G. Bonchev, and R. F. Diegelmann (2007) Impaired wound healing. Clin. Dermatol. 25: 19–25.

    Article  Google Scholar 

  3. Bielefeld, K. A., S. Amini-Nik, and B. A. Alman (2013) Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell. Mol. Life Sci. 70: 2059–2081.

    Article  CAS  Google Scholar 

  4. Velnar, T., T. Bailey, and V. Smrkolj (2009) The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 37: 1528–1542.

    Article  CAS  Google Scholar 

  5. Leask, A. and D. J. Abraham (2004) TGF-β signaling and the fibrotic response. FASEB J. 18: 816–827.

    Article  CAS  Google Scholar 

  6. Clark, R. A. (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J. Invest. Dermatol. 94: s128–s134.

    Article  Google Scholar 

  7. Krampera, M., G. Pizzolo, G. Aprili, and M. Franchini (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39: 678–683.

    Article  CAS  Google Scholar 

  8. Minguell, J. J., A. Erices, and P. Conget (2001) Mesenchymal stem cells. Exp. Biol. Med. 226: 507–520.

    Article  CAS  Google Scholar 

  9. Barry, F. P. and J. M. Murphy (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 36: 568–584.

    Article  CAS  Google Scholar 

  10. Phinney, D. G. and D. J. Prockop (2007) Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair-current views. Stem Cells 25: 2896–2902.

    Article  Google Scholar 

  11. Maxson, S., E. A. Lopez, D. Yoo, A. Danilkovitch-Miagkova, and M. A. LeRoux (2012) Concise review: Role of mesenchymal stem cells in wound repair. Stem Cells Transl. Med. 1: 142–149.

    Article  CAS  Google Scholar 

  12. Wu, Y., J. Wang, P. G. Scott, and E. E. Tredget (2007) Bone marrow-derived stem cells in wound healing: A review. Wound Repair Regen. 15: s18–s26.

    Article  Google Scholar 

  13. Lee, J. W., X. Fang, A. Krasnodembskaya, J. P. Howard, and M. A. Matthay (2011) Concise review: Mesenchymal stem cells for acute lung injury: Role of paracrine soluble factors. Stem Cells. 29: 913–919.

    Article  CAS  Google Scholar 

  14. Chen, L., E. E. Tredget, P. Y. Wu, and Y. Wu (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS One 3: e1886.

    Article  Google Scholar 

  15. Zhao, J., L. Hu, J. Liu, N. Gong, and L. Chen (2013) The effects of cytokines in adipose stem cell-conditioned medium on the migration and proliferation of skin fibroblasts in vitro. BioMed Res. Int. 2013: 578479.

    Google Scholar 

  16. Walter, M., K. T. Wright, H. Fuller, S. MacNeil, and W. E. B. Johnson (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays. Exp. Cell Res. 316: 1271–1281.

    Article  CAS  Google Scholar 

  17. Bae, J.-S., S.-H. Lee, J.-E. Kim, J.-Y. Choi, R.-W. Park, J. Y. Park, H.-S. Park, Y.-S. Sohn, D.-S. Lee, and E. B. Lee (2002) βig-h3 supports keratinocyte adhesion, migration, and proliferation through α3β1 integrin. Biochem. Biophys. Res. Commun. 294: 940–948.

    Article  CAS  Google Scholar 

  18. Zhou, B.-R., Y. Xu, S.-L. Guo, Y. Xu, Y. Wang, F. Zhu, F. Permatasari, D. Wu, Z.-Q. Yin, and D. Luo (2013) The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. BioMed Res. Int. 2013: 519126.

    Google Scholar 

  19. Fraidenraich, D., E. Stillwell, E. Romero, D. Wilkes, K. Manova, C. T. Basson, and R. Benezra (2004) Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science 306: 247–252.

    Article  CAS  Google Scholar 

  20. Crisostomo, P. R., A. M. Abarbanell, M. Wang, T. Lahm, Y. Wang, and D. R. Meldrum (2008) Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. Am. J. Physiol. Heart Circ. Physiol. 295: 1726–1735.

    Article  Google Scholar 

  21. Van Hoof, D., R. Passier, D. Ward-Van Oostwaard, M. W. Pinkse, A. J. Heck, C. L. Mummery, and J. Krijgsveld (2006) A quest for human and mouse embryonic stem cell-specific proteins. Mol. Cell. Proteom. 5: 1261–1273.

    Article  Google Scholar 

  22. Prasajak, P., P. Rattananinsruang, K. Chotinantakul, C. Dechsukhum, and W. Leeanansaksiri (2015) Embryonic stem cells conditioned medium enhances Wharton’s jelly-derived mesenchymal stem cells expansion under hypoxic condition. Cytotechnol. 67: 493–505.

    Article  CAS  Google Scholar 

  23. Singla, D. K., R. D. Singla, and D. E. McDonald (2008) Factors released from embryonic stem cells inhibit apoptosis in H9c2 cells through PI3K/Akt but not ERK pathway. Am. J. Physiol. Heart Circ. Physiol. 295: 907–913.

    Article  Google Scholar 

  24. LaFramboise, W., P. Petrosko, J. Krill-Burger, D. Morris, A. McCoy, D. Scalise, D. Malehorn, R. Guthrie, M. Becich, and R. Dhir (2010) Proteins secreted by embryonic stem cells activate cardiomyocytes through ligand binding pathways. J. Proteom. 73: 992–1003.

    Article  CAS  Google Scholar 

  25. Takahashi, K. and S. Yamanaka (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.

    Article  CAS  Google Scholar 

  26. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.

    Article  CAS  Google Scholar 

  27. Polo, J. M., S. Liu, M. E. Figueroa, W. Kulalert, S. Eminli, K. Y. Tan, E. Apostolou, M. Stadtfeld, Y. Li, and T. Shioda (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28: 848–855.

    Article  CAS  Google Scholar 

  28. Dimos, J. T., K. T. Rodolfa, K. K. Niakan, L. M. Weisenthal, H. Mitsumoto, W. Chung, G. F. Croft, G. Saphier, R. Leibel, and R. Goland (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321: 1218–1221.

    Article  CAS  Google Scholar 

  29. Soldner, F., D. Hockemeyer, C. Beard, Q. Gao, G. W. Bell, E. G. Cook, G. Hargus, A. Blak, O. Cooper, and M. Mitalipova (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136: 964–977.

    Article  CAS  Google Scholar 

  30. Lian, R.-L., X.-L. Guo, J.-S. Chen, Y.-L. Guo, J.-F. Zheng, and Y.-W. Chen (2016) Effects of induced pluripotent stem cellsderived conditioned medium on the proliferation and antiapoptosis of human adipose-derived stem cells. Mol. Cell. Biochem. 413: 69–85.

    Article  CAS  Google Scholar 

  31. Zhang, Y., D. Wang, K. Cao, M. Chen, X. Yang, and Y. Tao (2014) Rat induced pluripotent stem cells protect H9C2 cells from cellular senescence via a paracrine mechanism. Cardiol. 128: 43–50.

    Article  CAS  Google Scholar 

  32. Zhang, Y., X. Liang, S. Liao, W. Wang, J. Wang, X. Li, Y. Ding, Y. Liang, F. Gao, and M. Yang (2015) Potent paracrine effects of human induced pluripotent stem cell-derived mesenchymal stem cells attenuate doxorubicin-induced cardiomyopathy. Sci. Rep. 5: 11235.

    Article  CAS  Google Scholar 

  33. Zhang, J., J. Guan, X. Niu, G. Hu, S. Guo, Q. Li, Z. Xie, C. Zhang, and Y. Wang (2015) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J. Transl. Med. 13: 49.

    Article  Google Scholar 

  34. Bonab, M. M., K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh, and B. Nikbin (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 7: 14.

    Article  Google Scholar 

  35. Niwa, H., T. Burdon, I. Chambers, and A. Smith (1998) Selfrenewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12: 2048–2060.

    Article  CAS  Google Scholar 

  36. Ying, Q.-L., J. Wray, J. Nichols, L. Batlle-Morera, B. Doble, J. Woodgett, P. Cohen, and A. Smith (2008) The ground state of embryonic stem cell self-renewal. Nature 453: 519–523.

    Article  CAS  Google Scholar 

  37. Kim, W.-S., B.-S. Park, J.-H. Sung, J.-M. Yang, S.-B. Park, S.-J. Kwak, and J.-S. Park (2007) Wound healing effect of adipose-derived stem cells: A critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 48: 15–24.

    Article  CAS  Google Scholar 

  38. Li, X., Y. Xu, Y. Chen, S. Chen, X. Jia, T. Sun, Y. Liu, X. Li, R. Xiang, and N. Li (2013) SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/β-catenin signal network. Cancer Lett. 336: 379–389.

    Article  CAS  Google Scholar 

  39. Rosler, E. S., G. J. Fisk, X. Ares, J. Irving, T. Miura, M. S. Rao, and M. K. Carpenter (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229: 259–274.

    Article  CAS  Google Scholar 

  40. Chen, G., D. R. Gulbranson, Z. Hou, J. M. Bolin, V. Ruotti, M. D. Probasco, K. Smuga-Otto, S. E. Howden, N. R. Diol, and N. E. Propson (2011) Chemically defined conditions for human iPSC derivation and culture. Nat. Methods. 8: 424–429.

    Article  CAS  Google Scholar 

  41. Baharvand, H., M. Hajheidari, S. K. Ashtiani, and G. H. Salekdeh (2006) Proteomic signature of human embryonic stem cells. Proteom. 6: 3544–3549.

    Article  Google Scholar 

  42. Zhang, J., E. Nuebel, G. Q. Daley, C. M. Koehler, and M. A. Teitell (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11: 589–595.

    Article  CAS  Google Scholar 

  43. Panopoulos, A. D., O. Yanes, S. Ruiz, Y. S. Kida, D. Diep, R. Tautenhahn, A. Herrerías, E. M. Batchelder, N. Plongthongkum, and M. Lutz (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22: 168–177.

    Article  CAS  Google Scholar 

  44. Folmes, C. D., T. J. Nelson, A. Martinez-Fernandez, D. K. Arrell, J. Z. Lindor, P. P. Dzeja, Y. Ikeda, C. Perez-Terzic, and A. Terzic (2011) Somatic oxidative bioenergetics transitions into pluripotencydependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14: 264–271.

    Article  CAS  Google Scholar 

  45. Gerlier, D. and N. Thomasset (1986) Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods 94: 57–63.

    Article  CAS  Google Scholar 

  46. Twentyman, P. and M. Luscombe (1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer 56: 279–285.

    Article  CAS  Google Scholar 

  47. Ngangan, A. V., J. C. Waring, M. T. Cooke, C. J. Mandrycky, and T. C. McDevitt (2014) Soluble factors secreted by differentiating embryonic stem cells stimulate exogenous cell proliferation and migration. Stem Cell Res. Ther. 5: 26.

    Article  Google Scholar 

  48. Bendall, S. C., C. Hughes, J. L. Campbell, M. H. Stewart, P. Pittock, S. Liu, E. Bonneil, P. Thibault, M. Bhatia, and G. A. Lajoie (2009) An enhanced mass spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol. Cell. Proteom. 8: 421–432.

    Article  CAS  Google Scholar 

  49. Kim, K., A. Doi, B. Wen, K. Ng, R. Zhao, P. Cahan, J. Kim, M. Aryee, H. Ji, and L. Ehrlich (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467: 285–290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, M., Kim, Y.J., Son, Y.J. et al. Promotive effects of human induced pluripotent stem cell-conditioned medium on the proliferation and migration of dermal fibroblasts. Biotechnol Bioproc E 22, 561–568 (2017). https://doi.org/10.1007/s12257-017-0221-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0221-1

Keywords

Navigation