Skip to main content
Log in

Enhancing biodiesel production by immobilized whole cells by optimizing reaction conditions and adding glycerol and water

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, several methods were devised and evaluated to enhance biodiesel production by whole cells immobilized onto the polyurethane foam coated with activated carbon. Biodiesel conversion was increased to 76.4% with the increase in the number of polyurethane foam until it occupied 18.0 or 2.4% of reaction mixture based on apparent or actual volume of supports, respectively. Stepwise methanol addition to prevent methanol inhibition on the immobilized whole cells was optimized in terms of number of aliquot and feeding interval. When 4.5 molar ratio of methanol to soybean oil was divided into 4 equal aliquots and each aliquot was fed to the reaction mixture every 24 h, the highest final biodiesel conversion of 82.4% was achieved. Chemical treatment of the immobilized cells with 0.1% of chloroform for 2 h enhanced biodiesel conversion to 90.5%. The initial addition of 5% glycerol in the fresh reaction mixture increased biodiesel conversion to 90.3% while the removal of glycerol during biodiesel production barely increased biodiesel conversion. The biodiesel conversion was increased with the increase of initial water content in the fresh reaction mixture and the highest value was 92.7% at 3.0% of water content, but decreased thereafter. The effects of co-addition of glycerol and water on biodiesel production were also investigated, and the co-addition of 3.125% of glycerol and 1.875% of water relative to soybean oil substantially increased biodiesel conversion to 95.0%. By these optimization of reaction conditions and co-adding glycerol and water, initial biodiesel production rate and final biodiesel conversion were remarkably enhanced by 26.8 and 24.1%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwon, M. H. and S. H. Yeom (2015) Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Biotechnol. Bioproc. Eng. 20: 276–283.

    Article  CAS  Google Scholar 

  2. Atadashi, I. M., M. K. Aroua, A. Z. Abdul, and N. Sulaiman (2013) The effects of catalysts in biodiesel production: A review. J. Ind. Eng. Chem. 19: 14–26.

    Article  CAS  Google Scholar 

  3. Lee, J. H., S. B. Kim, H. Y. Yoo, Y. J. Suh, G. B. Kang, W. I. Jang, J. W. Kang, C. H. Park, and S. W. Kim (2013) Biodiesel production by enzymatic process using Jatropha oil and waste soybean oil. Biotechnol. Bioproc. Eng. 18: 703–708.

    Article  CAS  Google Scholar 

  4. Go, Y. W. and S. H. Yeom (2014) Application of pseudo-two phase partitioning bioreactor (P-TPPB) to the production of biodiesel. Bioproc. Biosyst. Eng. 37: 269–275.

    Article  CAS  Google Scholar 

  5. Kyeong, J. S. and S. H. Yeom (2014) Preparation of immobilized whole cell biocatalyst and biodiesel production using a packedbed bioreactor. Bioproc. Biosyst. Eng. 37: 2189–2198.

    Article  CAS  Google Scholar 

  6. Lateef, F. A., O. D. Onukwuli, U. C. Okoro, P. M. Ejikeme, and P. Jere (2014) Some physical properties and oxidative stability of biodiesel produced from oil seed crops. Kor. J. Chem. Eng. 31: 725–731.

    Article  CAS  Google Scholar 

  7. Ranganathan, S. V., L. Marasimhan, and K. Muthukumar (2008) An overview of enzymatic production of biodiesel. Bioresour. Technol. 99: 3975–3981.

    Article  CAS  Google Scholar 

  8. Li, L., W. Du, D. Liu, L. Wang, and Z. Li (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J. Mol. Catal. B: Enz. 43: 58–62.

    Article  CAS  Google Scholar 

  9. Fjerbaek, L., K. V. Christensen, and K. V. Norddahl (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng. 102: 1298–1315.

    Article  CAS  Google Scholar 

  10. Chen, H. C., H. Y. Ju, T. T. Wu, Y. C. Liu, C. C. Lee, C. Chang, Y. L. Chung, and C. J. Shieh (2011) Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: Optimization and enzyme reuse study. J. Biomed. Biotechnol. doi: 10.1155/2011/950725.

    Google Scholar 

  11. Jeon, D. J. and S. H. Yeom (2011) Comparison of methods for preventing methanol inhibition in enzymatic production of biodiesel. Kor. J. Chem. Eng. 28: 1420–1426.

    Article  CAS  Google Scholar 

  12. Shimada, Y., Y. Watanabe, A. Suglihara, and Y. Tominaga (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B: Enz. 17: 133–142.

    Article  CAS  Google Scholar 

  13. Samukawa, T., M. Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, and H. Fukuda (2000) Pretreatment of Immobilized Candida antarctica lipase for Biodiesel fuel production from plant oil. J. Bioresour. Bioeng. 90: 180–183.

    Article  CAS  Google Scholar 

  14. Hama, S., H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda, and H. Fukuda (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 34: 273–278.

    Article  CAS  Google Scholar 

  15. Talukder, M. M. R., J. C. Wu, T. B. van Nguyen, N. M. Fen, and Y. L. S. Melissa (2009) Novozym 435 for production of biodiesel from unrefined palm oil: Comparison of methanolysis methods. J. Mol. Cat. B: Enz. 60: 106–112.

    Article  CAS  Google Scholar 

  16. Jeon, D. J. and S. H. Yeom (2010) Two-step bioprocess employing whole cell and enzyme for economical biodiesel production. Kor. J. Chem. Eng. 27: 1555–1559.

    Article  CAS  Google Scholar 

  17. Jin, G., T. J. Bierma, C. G. Hamaker, R. Mucha, V. Schola, J. Stewart, and C. Wade (2009) Use of a whole-cell biocatalyst to produce biodiesel in a water-containing system. J. Environ. Sci. Health, Part A. 44: 21–28.

    Article  CAS  Google Scholar 

  18. Jin, G., T. J. Bierma, C. G. Hamaker, R. Rhykerd, and L. A. Loftus (2008) Producing biodiesel using whole-cell biocatalysts in separate hydrolysis and methanolysis reactions, J. Environ. Sci. Health, Part A. 43: 589–595.

    Article  CAS  Google Scholar 

  19. Arai, S., K. Nakashima, T. Tanino, C. Ogino, A. Kondo, and H. Fukuda (2010) Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enz. Microbial. Technol. 46: 51–55.

    Article  CAS  Google Scholar 

  20. Lee, J. H., S. B. Kim, H. Yoo, J. H. Lee, S. O. Han, C. H. Park, and S. W. Kim (2013) Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Kor. J. Chem. Eng. 30: 1335–1338.

    Article  CAS  Google Scholar 

  21. Tamalampudi, S., M. R. Talukder, S. Hama, T. Numata, A. Kondo, and H. Fukuda (2008) Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem. Eng. J. 39: 185–189.

    Article  CAS  Google Scholar 

  22. Li, W., W. Du, and D. Liu (2007) Rhizopus oryzae IFO 4697 whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Proc. Biochem. 42: 1481–1485.

    Article  CAS  Google Scholar 

  23. Sun, T., W. Du, and D. Liu (2011) Comparative study on stability of whole cells during biodiesel production in solvent-free system. Proc. Biochem. 46: 661–664.

    Article  CAS  Google Scholar 

  24. Matsumoto, T., S. Takahashi, M. Kaieda, M. Ueda, A. Tanaka, H. Fukuda, and A. Kondo (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl. Microbiol. Biotechnol. 57: 515–529.

    Article  CAS  Google Scholar 

  25. Du, W., W. Li, T. Sun, X. Chen, and D. Liu (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl. Microbiol. Biotechnol. 79: 331–337.

    Article  CAS  Google Scholar 

  26. Yoshida, A., S. Hama, N. Tamadani, H. Fukuda, and A. Kondo (2012) Improved performance of a packed-bed reactor for biodiesel production through whole-cell biocatalysis employing a high-lipase-expression system. Biochem. Eng. J. 63: 76–80.

    Article  CAS  Google Scholar 

  27. Yoshid, A., S. Hama, N. Tamadani, H. Noda, H. Fukuda, and A. Kondo (2012) Continuous production of biodiesel using wholecell biocatalyst: Sequential conversion of an aqueous oil emulsion into anhydrous product. Biochem. Eng. J. 68: 7–11.

    Article  Google Scholar 

  28. Sim, J. H., A. H. Kamaruddin, and S. Bhatia (2009) Effect of mass transfer and enzyme loading on the biodiesel yield and reaction rate in the enzymatic transesterification of crude palm oil. Energy Fuels. 23: 4651–4658.

    Article  CAS  Google Scholar 

  29. Lukovic, N., K. J. Zorica, and D. Bezbradica (2011) Biodiesel Fuel Production by Enzymatic Transesterification of Oils: Recent Trends, Challenges and Future Perspectives, Alternative Fuel, Dr. Maximino Manzanera (Ed.), ISBN: 978-953-307-372-9, InTech.

    Google Scholar 

  30. Le, W., W. Du, D. Liu, and Y. Yao (2008) Study on factors influencing stability of whole cell during biodiesel production in solvent-free and tert-butanol system. Biochem. Eng. J. 41: 111–115.

    Article  Google Scholar 

  31. Hong, W. P., J. Y. Park, K. Min, M. J. Ko, K. Park, and Y. J. Yoo (2011) Kinetics of glycerol effect on biodiesel production for optimal feeding of methanol. Kor. J. Chem. Eng. 28: 1908–1912.

    Article  CAS  Google Scholar 

  32. Shieh, C. J., H. F. Liao, and C. C. Lee (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour. Technol. 88: 103–106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Yeom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, S.H. Enhancing biodiesel production by immobilized whole cells by optimizing reaction conditions and adding glycerol and water. Biotechnol Bioproc E 21, 274–282 (2016). https://doi.org/10.1007/s12257-016-0046-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0046-3

Keywords

Navigation