Skip to main content
Log in

Influence of Vitreoscilla hemoglobin gene expression on 2,3-butanediol production in Klebsiella oxytoca

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A hemoglobin-like protein is a protein that aids in the delivery of oxygen in microbes in a similar fashion as hemoglobins in plants and animals. In this study, expression of Vitreoscilla hemoglobin (VHb) was used to improve the growth of Klebsiella oxytoca, and consequently, the 2,3-butanediol (2,3-BDO) production. The Vitreoscilla hemoglobin gene (vgb) was cloned into the expression vector pET-24a, and the recombination plasmid was then transformed in Klebsiella oxytoca ATCC43863. The efficiency of 2,3-BDO production and cell growth was analyzed by placing VHb expression under the control of the nar and luxS promoters instead of the T7 in Klebsiella oxytoca. Fermentation experiments were performed for comparison with the wild type under conditions of high/low aeration for the optimization of VHb-expressing cells in a 500 mL shaking flask and a 5 L fermenter. Moreover, cultivations were performed with addition of acetic acid to the culture media to study the effects of acetic acid on 2,3-BDO production, as acetic acid is known to induce 2,3-BDO production. The results indicated a 10% increase of cell growth in the presence of VHb, while 2,3-BDO production was further improved by the addition of acetic acid. In particular, the fed-batch fermentation of Klebsiella oxytoca LV with acetic acid added exhibited increase of the dry cell weight from 11.9 to 14.0 g/L, and improvement of the 2,3-BDO production from 34.9 to 49.4 g/L in 40 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatti-Kaul, R., U. Tornvall, L. Gustafsson, and P. Borjesson (2007) Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends in Biotechnol. 25: 119–124.

    Article  CAS  Google Scholar 

  2. John, R. P., K. M. Nampoothiri, and A. Pandey (2007) Fermentative production of lactic acid from biomass: An overview on process developments and future perspectives. Appl. Microbiol. Biotechnol. 74: 524–534.

    Article  CAS  Google Scholar 

  3. Van Haveren, J., E. L. Scott, and J. Sanders (2008) Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining 2: 41–57.

    Article  Google Scholar 

  4. Ji, X. J., H. Huang, and P. K. Ouyang (2011) Microbial 2,3-butanediol production: A-state-of-the-art review. Biotechnol. Adv. 29: 351–364.

    Article  CAS  Google Scholar 

  5. Xiu, Z. L. and A. P. Zeng (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917–926.

    Article  CAS  Google Scholar 

  6. Celinska, E. and W. Graj (2009) Biotechnological production of 2,3-butanediol current state and prospects. Biotechnol. Adv. 27: 715–725.

    Article  CAS  Google Scholar 

  7. Garg, S. K. and A. Jain (1995) Fermentative production of 2, 3-butanediol: A review. Bioresour. Technol. 51: 103–109.

    Article  CAS  Google Scholar 

  8. Syu, M. J. (2001) Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 55: 10–18.

    Article  CAS  Google Scholar 

  9. Jung, M., Y. N. Chiam, H. H. Song, J. W. Lee, and M. K. Oh (2012) Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl. Microbiol. Biotechnol. 95: 461–469.

    Article  CAS  Google Scholar 

  10. Ji, X. J., H. Huang, J. G. Zhu, and L. J. Ren (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 85: 1751–1758.

    Article  CAS  Google Scholar 

  11. Kim, B. R., S. J. Lee, J. H. Park, L. Mingshou, M. K. Oh, Y. R. Kim, and J. W. Lee (2012) Enhanced 2,3-butanediol production in recombinant Klebsiella pneumonia via overexpression of synthesis-related genes. J. Microbiol. Biotechnol. 22: 1258–1263.

    Article  CAS  Google Scholar 

  12. Han, S. H., J. E. Lee, K. M. Park, and Y. C. Park (2013) Production of 2,3-butanediol by a low acid producing Klebsiella oxytoca NBRF4. New Biotechnol. 30: 166–172.

    Article  CAS  Google Scholar 

  13. Sattayasamitsathit, S., P. Prasertsan, and P. Methacanon (2011) Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Proc. Biochem. 46: 608–614.

    Article  CAS  Google Scholar 

  14. Li, Z. J., J. Jian, and X. X. Wei (2010) Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Appl. Microbiol. Biotechnol. 87: 2001–2009.

    Article  CAS  Google Scholar 

  15. Ui, S., Y. Takusagawa, T. Sato, T. Ohtsuki, A. Mimura, M. Ohkuma, and T. Kudo (2004) Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett. Appl. Microbiol. 39: 533–537.

    Article  CAS  Google Scholar 

  16. Jansen, N. B., M. C. Flickinger, and G. T. Tsao (1984) Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol. Bioeng. 26: 362–369.

    Article  CAS  Google Scholar 

  17. Biswas, R., M. Yamaoka, and H. Nakayama (2012) Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl. Microbiol. Biotechnol. 94: 651–658.

    Article  CAS  Google Scholar 

  18. Hardison, R. (1998) Hemoglobins from bacteria to man: Evolution of different patterns of gene expression. J. Exp. Biol. 201: 1099–1117.

    CAS  Google Scholar 

  19. Zhang, L., Y. Li, Z. Wang, Y. Xia, W. Chen, and K. Tang (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol. Adv. 25: 123–136.

    Article  CAS  Google Scholar 

  20. Dikshit, K. L. and D. A. Webster (1988) Cloning, characterization and expression of the bacterial hemoglobin gene from Vitreoscilla in Escherichia coli. Gene 70: 377–386.

    Article  CAS  Google Scholar 

  21. Khosla, C. and J. E. Bailey (1988) The Vitreoscilla hemoglobin gene: Molecular cloning, nucleotide sequence and genetic expression in Escherichia coli. Mol. Gen. Gene 214: 158–161.

    Article  CAS  Google Scholar 

  22. Kang, D. G., Y. K. Kim, and H. J. Cha (2002) Comparison of green fluorescent protein expression in two industrial Escherichia coli strains, BL21 and W3110, under co-expression of bacterial hemoglobin. Appl. Microbiol. Biotechnol. 59: 523–528.

    Article  CAS  Google Scholar 

  23. Wang, X., Y. Sun, X. Shen, F. Ke, Y. Zhao, Y. Liu, L. Xu, and Y. Yan (2012) Intracellular expression of Vitreoscilla hemoglobin improves production of Yarrowia lipolytica lipase LIP2 in a recombinant Pichia pastoris. Enz. Microbial. Technol. 50: 22–28.

    Article  CAS  Google Scholar 

  24. Geckil, H., Z. Barak, D. M. Chipman, S. O. Erenler, D. A. Webster, and B. C. Stark (2004) Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioproc. Biosyst. Eng. 26: 325–330.

    Article  CAS  Google Scholar 

  25. Khosla, C. and J. E. Bailey (1989) Characterization of the Oxygen-Dependent Promoter of the Vitreoscilla Hemoglobin Gene in Escherichia coli. J. Bacteriol. 171: 5995–6004.

    CAS  Google Scholar 

  26. Liang, F. and C. Shouwen (2007) Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improve the cell density and insecticidal crystal proteins yield. Appl. Microbiol. Biotechnol. 74: 390–397.

    Article  Google Scholar 

  27. Zeng, A. P., H. Biebl, and W. D. Deckwer (1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl. Microbiol. Biotechnol. 33: 485–489.

    CAS  Google Scholar 

  28. Renna, M. C., N. Najimudin, L. R. Winik, and S. A. Zahler (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175: 3863–3875.

    CAS  Google Scholar 

  29. Ma, C., A. Wang, J. Qin, L. Li, X. Ai, T. Jiang, H. Tang, and P. Xu (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82: 49–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-In Won.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Jw., Park, Km., Chung, M. et al. Influence of Vitreoscilla hemoglobin gene expression on 2,3-butanediol production in Klebsiella oxytoca . Biotechnol Bioproc E 20, 10–17 (2015). https://doi.org/10.1007/s12257-014-0642-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0642-z

Keywords

Navigation