Skip to main content
Log in

Genome shuffling of Lactobacillus brevis for enhanced production of thymidine phosphorylase

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Thymidine phosphorylase (TPase) plays a vital role in the biosynthesis of nucleosides and their analogs which have tremendous potential in antiviral and anticancer therapies. In this study, genome shuffling was applied to develop new strains of Lactobacillus brevis with an enhanced production of TPase. The parent organisms were mutated using ultraviolet (UV) irradiation and were shuffled by recursive pool-wise protoplast fusion. The parent protoplasts of each cycle were inactivated by UV irritation for 50 min or by heating at 60°C for 60 min. A rapid and efficient pre-screening method for determining L. brevis fusants with increased TPase production was established by adding appropriate concentrations of substrate thymidine and potassium phosphate to the culture broth based on significant differences in the absorption spectra of substrate thymidine and its product, thymine, in alkaline solution at 290 nm. Strains F3-19 and F3-36 showed high TPase activity and favorable hereditary stability and were screened out through three rounds of recursive protoplast fusion. The increase in the TPase activity of F3-19 and F3-36 was 252.6 and 260.5%, respectively, in comparison with the wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clercq, E. D. (2004) Antiviral drugs in current clinical use. J. Clin. Virol. 30: 115–133.

    Article  Google Scholar 

  2. Robins, R. K. (1984) The potential of nucleotide analogs as inhibitors of retroviruses and tumors. Pharm. Res. 1: 11–18.

    Article  CAS  Google Scholar 

  3. Kadokawa, J. and S. Kobayashi (2010) Polymer synthesis by enzymatic catalysis. Curr. Opin. Chem. Biol. 14: 145–153.

    Article  CAS  Google Scholar 

  4. Jensen, K. F. and P. Nygaard (1975) Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Eur. J. Biochem. 51: 253–265.

    Article  CAS  Google Scholar 

  5. Shirae, H. and K. Yokozeki (1991) Purification and properties of purine nucleoside phosphorylase from Brevibacterium acetylicum ATCC 954. Agric. Biol. Chem. 55: 493–499.

    Article  CAS  Google Scholar 

  6. Saunders, P. P., B. A. Wilson, and G. F. Saunders (1969) Purification and comparative properties of a pyrimidine nucleoside phosphorylase from Bacillus Stearothermophilus. J. Biol. Chem. 244: 3691–3697.

    CAS  Google Scholar 

  7. Avraham, Y., N. Grossowicz, and J. Yashphe (1990) Purification and characterization of uridine and thymidine phosphorylase from Lactobacillus casei. Biochim. Biophys. Acta 1040: 287–293.

    Article  CAS  Google Scholar 

  8. Blank, J. G. and P. A. Hoffee (1975) Purification and properties of thymidine phosphorylase from Salmonella typhimurium. Arch. Biochem. Biophys. 168: 259–265.

    Article  CAS  Google Scholar 

  9. Zinchenko, A. I., V. N. Barai, S. B. Bokut, E. I. Kvasyuk, and I. A. Mikhaiopulo (1990) Synthesis of 9-(β-D-arabinofuranosyl) guanine using whole cells of Escherichia coli. Appl. Microbiol. Biotechnol. 32: 658–661.

    Article  CAS  Google Scholar 

  10. Fernández-Lucas, J., A. Fresco-Taboada, C. Acebal, I. de la Mata, and M. Arroyo (2011) Enzymatic synthesis of nucleosides analogues using immobilized 2'-deoxyribosyltransferase from Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 91: 317–327.

    Article  Google Scholar 

  11. Luo, W., Y. Liu, X. Zhu, W. Zhao, L. Huang, J. Cai, Z. Xu, and P. Cen (2011) Cloning and characterization of purine nucleoside phosphorylase in Escherichia coli and subsequent ribavirin biosynthesis using immobilized recombinant cells. Enz. Microb. Technol. 48: 438–444.

    Article  CAS  Google Scholar 

  12. Biot-Pelletier, D. and V. J. Martin (2014) Evolutionary engineering by genome shuffling. Appl. Microbiol. Biotechnol. 98: 3877–3887.

    Article  CAS  Google Scholar 

  13. Zhang, Y., K. Perry, V. A. Vinci, K. Powell, W. P. Stemmer, and S. B. del Cardayré (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644–646.

    Article  CAS  Google Scholar 

  14. Patnik, R., S. Louie, V. Gavrilovic, K. Perry, W. P. Stemmer, C. M. Ryan, and S. B. del Cardayré (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 20: 707–712.

    Article  Google Scholar 

  15. El-Gendy, M. M. and A. M. El-Bondkly (2011) Genome shuffling of marine derived bacterium Nocardia sp. ALAA 2000 for improved ayamycin production. Antonie van Leeuwenhoek. 99: 773–780.

    Article  CAS  Google Scholar 

  16. Wang, H., J. Zhang, X. Wang, W. Qi, and Y. Dai (2012) Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii. Biotechnol. Lett. 34: 145–151.

    Article  Google Scholar 

  17. Chen, X., P. Wei, L. Fan, D. Yang, X. Zhu, W. Shen, Z. Xu, and P. Cen (2007) Generation of high-yield rapamycin-producing strains through protoplasts-related techniques. Appl. Microbiol. Biotechnol. 83: 507–512.

    Article  Google Scholar 

  18. Yu, G., Y. Hu, M. Hui, L. Chen, L. Wang, and N. Liu (2014) Genome shuffling of Streptomyces roseosporus for improving daptomycin production. Appl. Biochem. Biotechnol. 172: 2661–2669.

    Article  CAS  Google Scholar 

  19. Xu, B., Z. Jin, Q. Jin, N. Li, and P. Cen (2009) Improvement of pristinamycin production by genome shuffling and medium optimization for Streptomyces Pristinaespiralis. Biotechnol. Bioproc. Eng. 14: 175–179.

    Article  CAS  Google Scholar 

  20. Li, W., G. Chen, L. Gu, W. Zeng, and Z. Liang (2014) Genome shuffling of Aspergillus niger for improving transglycosylation activity. Appl. Biochem. Biotechnol. 172: 50–61.

    Article  CAS  Google Scholar 

  21. Friedkin, M. and D. Roberts (1954) The enzymatic synthesis of nucleosides: I. Thymidine phosphorylase in mammalian tissue. J. Biol. Chem. 207: 245–256.

    CAS  Google Scholar 

  22. Wang, Y., Y. Li, X. Pei, L. Yu, and Y. Feng (2007) Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J. Biotechnol. 129: 510–515.

    Article  CAS  Google Scholar 

  23. Singhvi, M., D. Joshi, S. Gaikaiwari, and D. V. Gokhale (2010) Protoplast formation and regeneration in Lactobacillus delbruekii. Ind. J. Microbiol. 50: 97–100.

    Article  CAS  Google Scholar 

  24. Lee-Wickner, L. J. and B. M. Chassy (1984) Production and regeneration of Lactobacillus casei protoplasts. Appl. Environ. Microbiol. 48: 994–1000.

    CAS  Google Scholar 

  25. Laemmi, U. K. (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  26. Hotchkiss, R. D. (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 175: 315–332.

    CAS  Google Scholar 

  27. Gong, J., H. Zheng, Z. Wu, T. Chen, and X. Zhao (2009) Genome shuffling: Progress and applications for phenotype improvement. Biotchnol. Adv. 27: 996–1005.

    Article  Google Scholar 

  28. Luo, J., J. Li, D. Liu, F. Liu, Y. Wang, X. Song, and M. Wang (2012) Genome shuffling of Streptomyces gilvosporeus for improving natamycin production. J. Agirc. Food Chem. 60: 6026–6036.

    Article  CAS  Google Scholar 

  29. Dai, M., S. Ziesman, T. Ratcliffe, R. T. Gill, and S. D. Copley (2005) Visualization of protoplast fusion and quantitation of recombination in fused protoplasts of auxotrophic strains of Escherichia coli. Metab. Eng. 7: 45–52.

    Article  CAS  Google Scholar 

  30. Hida, H., T. Yamada, and Y. Yamada (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl. Microbiol. Biotechnol. 73: 1387–1393.

    Article  CAS  Google Scholar 

  31. Hopwood, D. A. and H. M. Wright. (1981) Protoplast fusion in Streptomyces: Fusions involving ultraviolet irradiated protoplasts. J. Gen. Microbiol. 126: 21–27.

    Google Scholar 

  32. Hopwood, D. A. and H. M. Wright (1979) Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolor. J. Gen. Microbiol. 111: 137–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xue, F., Wang, W. et al. Genome shuffling of Lactobacillus brevis for enhanced production of thymidine phosphorylase. Biotechnol Bioproc E 20, 333–340 (2015). https://doi.org/10.1007/s12257-014-0617-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0617-0

Keywords

Navigation