Skip to main content
Log in

Saccharina japonica, a potential feedstock for pigment production using submerged fermentation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, the feasibility and applicability of marine algal biomass Saccharina (Laminaria) japonica as a sole substrate for the production of pigments by Talaromyces amestolkiae GT11 in submerged fermentation was evaluated. Results indicated that the fungus T. amestolkiae GT11 produced the highest amount of extracellular yellow (444.83 ± 22) and red (200.94 ± 12), and intracellular yellow (362.28 ± 34) and red (193.87 ± 10) pigments, utilizing 1% (w/v) of S. japonica powder at an initial pH of 5 and 30°C, as compared to other physiochemical parameters tested. The pH and thermostability analysis results demonstrated that even after 5 h of incubation the pigment was found to be highly stable at pH 6 and 40 ~ 60°C with 98% and 90.56 ~ 84.69% of residual absorbance, respectively. Apart from the application of pigment as a natural colorant instead of synthetic one in biotechnology industry, the fermented substrate itself can be exploited as food and feed with enhanced nutrient content, improved protein quality and fiber digestibility, etc. However, further studies concerning the safety and functional properties of the pigment and fermented substrate are required. Furthermore, this study provides the evidences about the biological method of making easily fermentable biomass for biorefiners or other metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Méndez, A., C. Pérez, J. C. Montañéz, G. Martínez, and C. N. Aguilar (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J. Zhejiang. Univ-SCI. B Biomed. Biotechnol. 12: 961–968.

    Google Scholar 

  2. Gunasekaran, S. and R. Poorniammal (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr. J. Biotechnol. 7: 1894–1898.

    CAS  Google Scholar 

  3. Dufossé, L., P. Galaup, A. Yaron, S. M. Arad, P. Blanc, K. N. C. Murthy, and G. A. Ravishankar (2005) Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends Food Sci. Technol. 16: 389–406.

    Article  Google Scholar 

  4. Blanc, P. J., M. O. Loret, A. L. Santerre, A. Pareilleux, D. Prome, J. C. Prome, J. P. Laussac, and G. Goma (1994) Pigments of Monascus. J. Food Sci. 59: 862–865.

    Article  CAS  Google Scholar 

  5. Tseng, Y. Y., M. T. Chen, and C. F. Lin (2000) Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. J. Appl. Microbiol. 88: 31–37.

    Article  CAS  Google Scholar 

  6. Carvalho, J. C., A. Pandey, S. Babitha, and C. R. Soccol (2003) Production of Monascus biopigments: an overview. Agro. Food Ind. Hi-Tech. 14: 37–42.

    CAS  Google Scholar 

  7. Engstrom, G. W., R. E. Stenkamp, D. J. McDorman, and L. H. Jensen (1982) Spectral identification, X-ray structure determination, and iron chelating capability of erythroglaucin, a red pigment from Aspergillus ruber. J. Agric. Food Chem. 30: 304–307.

    Article  CAS  Google Scholar 

  8. Méndez-Zavala, A., J. C. Contreras-Esquivel, F. Lara-Victoriano, R. Rodríguez-Herrera, and C. N. Aguilar (2007) Fungal production of a red pigment using a xerophilic strain of Penicillium purpurogenum GH2. Rev. Mex. Ing. Quím. 6: 267–273.

    Google Scholar 

  9. Mapari, S. A. S., K. F. Nielsen, T. O. Larsen, J. C. Frisvad, A. S. Meyer, and U. Thrane (2005) Exploring fungal biodiversity for the production of water soluble pigments as potential natural food colorants. Curr. Opin. Biotechnol. 16: 231–238.

    Article  CAS  Google Scholar 

  10. Mapari, S. A. S., A. S. Meyer, U. Thrane, and J. C. Frisvad (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb. Cell Fact. 8: 25.

    Article  Google Scholar 

  11. Ogihara, J. and K. Oishi (2002) Effect of ammonium nitrate on the production of PP-V and monascorubrin homologues by Penicillium sp. AZ. J. Biosci. Bioeng. 93: 54–59.

    Article  CAS  Google Scholar 

  12. Samson, R. A., N. Yilmaz, J. Houbraken, H. Spierenburg, K. A. Seifert, S. W. Peterson, J. Varga, and J. C. Frisvad (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud. Mycol. 70: 159–183.

    Article  CAS  Google Scholar 

  13. Yilmaz, N., J. Houbraken, E. S. Hoekstra, J. C. Frisvad, C. M. Visagie, and R. A. Samson (2012) Delimitation and characterization of Talaromyces purpurogenus and related species. Persoonia. 29: 39–54.

    Article  CAS  Google Scholar 

  14. Babitha, S., C. R. Soccol, and A. Pandey (2006) Jackfruit seed-a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol. Biotechnol. 44: 465–471.

    CAS  Google Scholar 

  15. Wei, N., J. Quarterman, and Y. S. Jin (2013) Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol. 31: 70–77.

    Article  CAS  Google Scholar 

  16. Holdt, S. L. and S. Kraan (2011) Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 23: 543–597.

    Article  CAS  Google Scholar 

  17. Bartsch, I., C. Wiencke, K. Bischof, C. M. Buchholz, H. Buck, A. Eggert, P. Feuerpfeil, D. Hanelt, S. Jacobsen, R. Karez, U. Karsten, M. Molis, M. Y. Roleda, H. Schubert, R. Schumann, K. Valentin, F. Weinberger, and J. Wiese (2008) The genus Laminaria sensulato: recent insights and developments. Eur. J. Phycol. 43: 1–86.

    Article  Google Scholar 

  18. Jung, K. A., S. R. Lim, Y. Kim, and J. M. Park (2013) Potential of macroalgae as feed stocks for biorefinery. Bioresour. Technol. 135: 182–190.

    Article  CAS  Google Scholar 

  19. Chae, H. R. and S. K. Kim (2013) Optimization of pretreatment conditions and use of a two stage fermentation process for the production of ethanol from seaweed, Saccharina japonica. Biotechnol. Bioproc. Eng. 18: 715–720.

    Article  Google Scholar 

  20. Gupta, S., N. Abu-Ghannam, and A. G. M. Scannell (2011) Growth and Kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds. Food Bioprod. Proc. 89: 346–355.

    Article  CAS  Google Scholar 

  21. General, T., H. J. Kim, B. Prasad, H. T. A. Ngo, N. Vadakedath, and M. G. Cho (2013) Fungal utilization of a known and safe macroalga for pigment production using solid-state fermentation. J. Appl. Phycol. doi: 10.1007/s10811-013-0168-3.

    Google Scholar 

  22. Sakurai, Y., T. H. Lee, and H. Shiota (1977) On the convenient method for glucosamine estimation in Koji. Agric. Biol. Chem. 41: 619–624.

    Article  CAS  Google Scholar 

  23. Nielsen, S. S. (2003) Phenol-sulfuric acid method for total carbohydrates. Food Analysis Laboratory Manual. pp. 39–44. Indiana, Kluwer Academic/Plenum Publisher.

    Google Scholar 

  24. Kang, B., X. Zhang, Z. Wu, H. Qi, and Z. Wang (2003) Effect of pH and nonionic surfactant on profile on intracellular and extracellular Monascus pigments. Proc. Biochem. 48: 759–767.

    Article  Google Scholar 

  25. Hamano, P. S., S. F. B. Orozco, and B. V. Kilikian (2005) Concentration determination of extracellular and intracellular red pigments produced by Monascus sp. Braz. Arch. Biol. Technol. 48: 43–49.

    Article  Google Scholar 

  26. Evans, P. J. and H. Y. Wang (1984) Pigment production from immobilized Monascus sp. utilizing polymeric resin adsorption. Appl. Environ. Microbiol. 47: 1323–1326.

    CAS  Google Scholar 

  27. Bühler, R. M. M., A. C. Dutra, F. Vendruscolo, D. E. Moritz, and J. L. Ninow (2013) Monascus pigment production in bioreactor using a co-product of biodiesel as substrate. Ciênc. Tecnol. Aliment. 33: 9–13.

    Article  Google Scholar 

  28. Leesing, R. and P. Karraphan (2011) Kinetic growth of the isolated oleaginous yeast for microbial lipid production. Afr. J. Biotechnol. 10: 13867–13877.

    CAS  Google Scholar 

  29. Santos-Edinum, V. C., I. C. Roberto, M. F. Simas Teixeira, and A. Pessoa (2013) Improving of red colorants production in submerged culture and the effect of different parameters in their stability. Biotechnol. Prog. 29: 778–7785.

    Article  Google Scholar 

  30. Sánchez, Ã. J. and C. A. Cardona (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270–5295.

    Article  Google Scholar 

  31. Yongsmith, B., V. Kitprechavanich, L. Chitrandon, C. Chaisrisook, N. Budda (2000) Color mutants of Monascus sp. KB9 and their comparative glucoamylase on rice solid culture. J. Mol. Catal. B: Enzym. 10: 263–272.

    Article  CAS  Google Scholar 

  32. Velmurugan, P., H. Hur, V. Balachandar, S. Kamala-Kannan, K. J. Lee, S. M. Lee, J. C. Chae, P. J. Shea, and B. T. Oh (2011) Monascus pigment production by solid-state fermentation with corn cob substrate. J. Biosci. Bio. Eng. 112: 590–594.

    Article  CAS  Google Scholar 

  33. Babitha, S., C. R. Soccol, and A. Pandey (2007) Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresour. Technol. 98: 1554–1560.

    Article  CAS  Google Scholar 

  34. Johns, M. R. and D. M. Stuart (1991) Production of pigments by Monascus purpureus in solid culture. J. Ind. Microbiol. 8: 23–28.

    Article  CAS  Google Scholar 

  35. Gombert, A. K., A. L. Pinto, L. R. Castilho, and D. M. G. Freire (1999) Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Proc. Biochem. 35: 85–90.

    Article  CAS  Google Scholar 

  36. Raimbault, M. (1998) General and microbiological aspects of solid substrate fermentation. Electro. J. Biotechnol. 1: 1–20.

    Article  Google Scholar 

  37. Orozco, S. F. and B. V. Kilikian (2008) Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J. Microbiol. Biotechnol. 24: 263–268.

    Article  CAS  Google Scholar 

  38. Mapari, S. A. S., A. S. Meyer, and U. Thrane (2008) Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on solid rice medium. Biotechnol. Lett. 30: 2183–2190.

    Article  CAS  Google Scholar 

  39. Gao, L., H. S. Man, Z. L. Xing, and C. S. Yong (2007) Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol of fungi. Mycol. Res. 111: 87–92.

    Article  CAS  Google Scholar 

  40. Feng, M., Y. Shao, and F. Chen (2012) Monascus pigments. Appl. Microbiol. Biotechnol. 96: 1421–1440.

    Article  CAS  Google Scholar 

  41. Lin, T. F. and A. L. Demain (1991) Effect of nutrition of Monascus sp. on formation of red pigments. Appl. Microbiol. Biotechnol. 36: 70–75.

    Article  CAS  Google Scholar 

  42. Jespersen, L., L. D. Stromdahl, K. Olsen, and L. H. Skibsted (2005) Heat and light stability of three natural blue colorants for use in confectionery and beverages. Eur. Food. Res. Technol. 220: 261–266.

    Article  CAS  Google Scholar 

  43. Silveria, S. T., D. L. Daroit, V. Sant Anna, and A. Brandelli (2011) Stability modeling of red pigment produced by Monascus purpureus in submerged cultivations with sugarcane bagasse. Food Bioproc. Technol. doi:10.1007/s11947-011-0710-8.

    Google Scholar 

  44. Mapari, S. A. S., A. S. Meyer, and U. Thrane (2009) Photo stability of natural orange-red and yellow pigments in liquid food model systems. J. Agric. Food. Chem. 57: 6253–6261.

    Article  CAS  Google Scholar 

  45. Carvalho, J. C., B. O. Oishi, A. Pandey, and C. R. Soccol (2005) Biopigments from Monascus: Strain selection, citrinin production and color stability. Braz. Arch. Bio. Technol. 48: 885–894.

    Article  Google Scholar 

  46. Nimnoi, P. and S. Lumyong (2011) Improving solid-state fermentation of Monascus purpureus on agricultural products for pigment production. Food Bioproc. Technol. 4: 1384–1390.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Gi Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

General, T., Prasad, B., Kim, HJ. et al. Saccharina japonica, a potential feedstock for pigment production using submerged fermentation. Biotechnol Bioproc E 19, 711–719 (2014). https://doi.org/10.1007/s12257-013-0709-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0709-2

Keywords

Navigation