Skip to main content
Log in

Assessment of Imaging Flow Cytometry for the Simultaneous Discrimination of Protein Particles and Silicone Oil Droplets in Biologicals

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Silicone oil droplets in biopharmaceutical products can originate from sources such as siliconized surfaces of primary packaging materials, potentially triggering the formation of protein–silicone oil particles. To better understand this phenomenon, there is a need for particle detection devices that cannot only distinguish between protein particles and silicone oil droplets but also determine particle sizes ranging from nanometers to micrometers.

Method

In this study, we conducted a systematic assessment of imaging flow cytometry (IFC) using the FlowSight® instrument. Our first step was to investigate specific instrument settings using protein particle samples spiked with silicone oil for particle classification. Based on these findings, we established suitable, harmonized working templates. Next, we evaluated the instrument’s accuracy and precision for particle sizes within the range of 0.5 to 100 µm and their respective concentrations. Finally, we investigated any constraints in particle concentration within this size range.

Results

This study demonstrates that IFC can effectively distinguish protein particles from silicone oil droplets when the latter is labeled with a specific fluorescent dye. Our findings suggest that fluorescently labeled particles ≥ 0.5 µm can be reliably detected. Through our research, we determined the particle concentration limits for each particle size in the range of 0.5 to 10 µm, with a precision deviation of less than 15%. However, our study also revealed that IFC exhibited insufficient accuracy for the tested particle concentrations within this size range. Additionally, we showed that the measurements were significantly influenced by the instrument settings.

Conclusion

Although we addressed numerous new aspects to enhance the experimental procedure of IFC measurements, we conclude that IFC is not an ideal technique for quantifying sub-visible particles. Instead, it should be employed to provide supportive characterization data in conjunction with commonly used sub-visible particle detection methods. If distinguishing between protein particles and silicone oil droplets is essential, IFC is an option, as long as the fluorescent dye is carefully selected.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are avalaible from the corresponding author on reasonable request.

Abbreviations

BF:

Brightfield

FL:

Fluorescence

SO:

Silicone oil

IFC:

Imaging flow cytometry

PFS:

Pre-filled syringe

SSC:

Side scatter

TDI:

Time delay integration

CCD:

Charge-coupled device

Ch:

Channel

CV:

Coefficient of variation

References

  1. Kim Y-S, Randolph TW, Stevens FJ, Carpenter JF. Kinetics and energetics of assembly, nucleation, and growth of aggregates and fibrils for an amyloidogenic protein insights into transition states from pressure, temperature, and co-solute studies*. J Biol Chem. 2002;277:27240–6.

    Article  CAS  PubMed  Google Scholar 

  2. Gerhardt A, Bonam K, Bee JS, Carpenter JF, Randolph TW. Ionic strength affects tertiary structure and aggregation propensity of a monoclonal antibody adsorbed to silicone oil–water interfaces. J Pharm Sci. 2013;102:429–40.

    Article  CAS  PubMed  Google Scholar 

  3. Kueltzo LA, Wang W, Randolph TW, Carpenter JF. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze–thawing. J Pharm Sci. 2008;97:1801–12.

    Article  CAS  PubMed  Google Scholar 

  4. Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotech. 2014;30:211–7.

    Article  CAS  PubMed  Google Scholar 

  5. Murphy RM, Roberts CJ. Protein misfolding and aggregation research: Some thoughts on improving quality and utility. Biotechnol Progr. 2013;29:1109–15.

    Article  CAS  Google Scholar 

  6. den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28:920–33.

    Article  Google Scholar 

  7. Kijanka G, Bee JS, Korman SA, Wu Y, Roskos LK, Schenerman MA, et al. Submicron size particles of a murine monoclonal antibody are more immunogenic than soluble oligomers or micron size particles upon subcutaneous administration in mice. J Pharm Sci. 2018;107:2847–59.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmadi M, Bryson CJ, Cloake EA, Welch K, Filipe V, Romeijn S, et al. Small amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeutics. Pharmaceut Res. 2015;32:1383–94.

    Article  CAS  Google Scholar 

  9. Ribeiro R, Abreu TR, Silva AC, Gonçalves J, Moreira JN. Current applications of pharmaceutical biotechnology. Adv Biochem Eng Biotechnol. 2019;23–54.

  10. Chisholm CF, Nguyen BH, Soucie KR, Torres RM, Carpenter JF, Randolph TW. In vivo analysis of the potency of silicone oil microdroplets as immunological adjuvants in protein formulations. J Pharm Sci. 2015;104:3681–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kannan A, Shieh IC, Negulescu PG, Suja VC, Fuller GG. Adsorption and aggregation of monoclonal antibodies at silicone oil–water interfaces. Mol Pharmaceut. 2021;18:1656–65.

    Article  CAS  Google Scholar 

  12. Narhi LO, Schmit J, Bechtold-Peters K, Sharma D. Classification of protein aggregates. J Pharm Sci. 2012;101:493–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wong IY, Wong D. Chapter 104 - Special adjuncts to treatment. 2013;1735–83. Available from: https://www.sciencedirect.com/science/article/pii/B9781455707379001041.

  14. Gaudric A, Tadayoni R. Chapter 117 - Macular hole. 2013;1962–78. Available from: https://www.sciencedirect.com/science/article/pii/B978145570737900117X.

  15. Gelatt KN, Spiess BM, Gilger BC. Chapter 12 - Vitreoretinal surgery. 2011;357–87. Available from: https://www.sciencedirect.com/science/article/pii/B9780702034299000122.

  16. Meyer BK. 4 - Material and process compatibility testing. 2012;67–82. Available from: https://www.sciencedirect.com/science/article/pii/B978190756818350004X.

  17. Richard CA, Wang T, Clark SL. Using first principles to link silicone oil/formulation interfacial tension with syringe functionality in pre-filled syringes systems. J Pharm Sci. 2020;109:3006–12.

    Article  CAS  PubMed  Google Scholar 

  18. Garidel P, Kuhn AB, Schafer LV, Karow-Zwick AR, Blech M. High-concentration protein formulations: how high is high? Eur J Pharm Biopharm. 2017;119:353–60.

    Article  CAS  PubMed  Google Scholar 

  19. Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci [Internet]. 2009;98:3167–81. Available from: http://www.sciencedirect.com/science/article/pii/S0022354916330878.

  20. Chisholm CF, Soucie KR, Song JS, Strauch P, Torres RM, Carpenter JF, et al. Immunogenicity of structurally perturbed hen egg lysozyme adsorbed to silicone oil microdroplets in wild-type and transgenic mouse models. J Pharm Sci [Internet]. 2017;106:1519–27. Available from: http://www.sciencedirect.com/science/article/pii/S0022354917300801.

  21. Strehl R, Rombach-Riegraf V, Diez M, Egodage K, Bluemel M, Jeschke M, et al. Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm Res. 2012;29:594–602.

    Article  CAS  PubMed  Google Scholar 

  22. Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12:708–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones LS, Kaufmann A, Middaugh CR. Silicone oil induced aggregation of proteins. J Pharm Sci. 2005;94:918–27.

    Article  CAS  PubMed  Google Scholar 

  24. Probst C. Characterization of protein aggregates, silicone oil droplets, and protein-silicone interactions using imaging flow cytometry. J Pharm Sci. 2019;109:364–74.

    Article  PubMed  Google Scholar 

  25. USP. <787> Subvisible particulate matter in therapeutic protein injections. 40th ed. 2017.

  26. USP. <788> Particulate matters in injections. 40th ed. 2017.

  27. 2.9.19 PhEur. Pharmacopeia Europaea, Particulate contamination: Sub-visible particles,. 6th ed. 2008.

  28. USP. <789> Particulate matter in ophthalmic solutions. 40th ed. 2017.

  29. Shah M, Rattray Z, Day K, Uddin S, Curtis R, van der Walle CF, et al. Evaluation of aggregate and silicone-oil counts in pre-filled siliconized syringes: an orthogonal study characterising the entire subvisible size range. Int J Pharm [Internet]. 2017;519:58–66. Available from: https://www.sciencedirect.com/science/article/pii/S0378517317300157.

  30. Gross J, Sayle S, Karow AR, Bakowsky U, Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. Eur J Pharm Biopharm. 2016;104:30–41.

    Article  CAS  PubMed  Google Scholar 

  31. Nabhan M, Pallardy M, Turbica I. Immunogenicity of bioproducts: cellular models to evaluate the impact of therapeutic antibody aggregates. Front Immunol. 2020;11:725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pham NB, Meng WS. Protein aggregation and immunogenicity of biotherapeutics. Int J Pharmaceut. 2020;585: 119523.

    Article  CAS  Google Scholar 

  33. Rane SS, Dearman RJ, Kimber I, Uddin S, Bishop S, Shah M, et al. Impact of a heat shock protein impurity on the immunogenicity of biotherapeutic monoclonal antibodies. Pharmaceut Res. 2019;36:51.

    Article  Google Scholar 

  34. Freitag AJ, Shomali M, Michalakis S, Biel M, Siedler M, Kaymakcalan Z, et al. Investigation of the immunogenicity of different types of aggregates of a murine monoclonal antibody in mice. Pharm Res. 2015;32:430–44.

    Article  CAS  PubMed  Google Scholar 

  35. JP. 6.07 Insoluble particulate matter test for injections. 16th ed. 2011.

  36. Sharma DK, King D, Oma P, Merchant C. Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J. 2010;12:455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gross-Rother J, Blech M, Preis E, Bakowsky U, Garidel P. Particle detection and characterization for biopharmaceutical applications: current principles of established and alternative techniques. Pharm. 2020;12:1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narhi LO, Jiang Y, Cao S, Benedek K, Shnek D. A critical review of analytical methods for subvisible and visible particles. Curr Pharm Biotechnol. 2009;10:373–81.

    Article  CAS  PubMed  Google Scholar 

  39. Barnard JG, Babcock K, Carpenter JF. Characterization and quantitation of aggregates and particles in interferon-β products: potential links between product quality attributes and immunogenicity. J Pharm Sci [Internet]. 2013;102:915–28. Available from: http://www.sciencedirect.com/science/article/pii/S0022354915311655.

  40. Zoells S, Weinbuch D, Wiggenhorn M, Winter G, Friess W, Jiskoot W, et al. Flow imaging microscopy for protein particle analysis–a comparative evaluation of four different analytical instruments. AAPS J. 2013;15:1200–11.

    Article  CAS  Google Scholar 

  41. Zoells S, Gregoritza M, Tantipolphan R, Wiggenhorn M, Winter G, Friess W, et al. How subvisible particles become invisible-relevance of the refractive index for protein particle analysis. J Pharm Sci. 2013;102:1434–46.

    Article  CAS  Google Scholar 

  42. Sharma VK, Kalonia DS. Aggregation of therapeutic proteins. 2010;205–56.

  43. USP. <1787> Informational chapter Measurement of subvisible particulate matter in therapeutic protein injections. 40th ed. 2017.

  44. Werk T, Volkin DB, Mahler H-C. Effect of solution properties on the counting and sizing of subvisible particle standards as measured by light obscuration and digital imaging methods. Eur J Pharm Sci. 2014;53:95–108.

    Article  CAS  PubMed  Google Scholar 

  45. Krause N, Kuhn S, Frotscher E, Nikels F, Hawe A, Garidel P, et al. Oil-immersion flow imaging microscopy for quantification and morphological characterization of submicron particles in biopharmaceuticals. Aaps J. 2021;23:13.

    Article  Google Scholar 

  46. Cavicchi R, Ripple D. Improving diameter accuracy for dynamic imaging microscopy for different particle types. J Pharm Sci. 2019;109:488–95.

    Article  PubMed  Google Scholar 

  47. Fawaz I, Schaz S, Boehrer A, Garidel P, Blech M. Micro-flow imaging multi-instrument evaluation for sub-visible particle detection. Eur J Pharm Biopharm. 2023;185:55–70.

    Article  CAS  PubMed  Google Scholar 

  48. Kiyoshi M, Shibata H, Harazono A, Torisu T, Maruno T, Akimaru M, et al. Collaborative study for analysis of subvisible particles using flow imaging and light obscuration: experiences in Japanese biopharmaceutical consortium. J Pharm Sci [Internet]. 2019;108:832–41. Available from: http://www.sciencedirect.com/science/article/pii/S0022354918305057.

  49. Weinbuch D, Zolls S, Wiggenhorn M, Friess W, Winter G, Jiskoot W, et al. Micro-flow imaging and resonant mass measurement (Archimedes)–complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci. 2013;102:2152–65.

    Article  CAS  PubMed  Google Scholar 

  50. Huang CT, Sharma D, Oma P, Krishnamurthy R. Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci. 2009;98:3058–71.

    Article  CAS  PubMed  Google Scholar 

  51. Zoells S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, et al. Particles in therapeutic protein formulations, Part 1: overview of analytical methods. J Pharm Sci. 2012;101:914–35.

    Article  CAS  Google Scholar 

  52. Luminex. Amnis imaging flow cytometers [Internet]. Luminex; 2019. Available from: https://www.luminexcorp.com/wp-content/uploads/2019/06/BR168187.FlowCyt.Amnis_.WR_.pdf.

  53. Helbig C, Menzen T, Wuchner K, Hawe A. Imaging flow cytometry for sizing and counting of subvisible particles in biotherapeutics. J Pharm Sci. 2022;111:2458–70.

    Article  CAS  PubMed  Google Scholar 

  54. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98:1201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oshinbolu S, Shah R, Finka G, Molloy M, Uden M, Bracewell DG. Evaluation of fluorescent dyes to measure protein aggregation within mammalian cell culture supernatants. J Chem Technol Biotechnol [Internet]. 2018;93:909–17. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29540956.

  56. Ludwig DB, Trotter JT, Gabrielson JP, Carpenter JF, Randolph TW. Flow cytometry: a promising technique for the study of silicone oil-induced particulate formation in protein formulations. Anal Biochem. 2011;410:191–9.

    Article  CAS  PubMed  Google Scholar 

  57. Llano RS, Zaballa EA, Bañuelos J, Durán CFAG, Vázquez JLB, Cabrera EP, et al. Photochemistry and photophysics - fundamentals to applications. 2018.

  58. micromod-Partikeltechnologie. micromod Partikeltechnologie GmbH - Products 2018 [Internet]. 2018. Available from: https://www.micromod.de/daten/File/downloads/Produktkataloge_Product%20catalogs/micromod%20General%20catalog.pdf.

  59. Probst C, Hall B, Basjii D. Classify, quantify, and size. Characterization of protein aggregates and silicone micro-droplets with FlowSight® Imaging Flow Cytometry. 2013;109:1:364–74.

  60. Amnis LC. IDEAS® image data exploration and analysis software user’s manual. Version 6.2. 2015.

  61. Basiji DA. Imaging flow cytometry, methods and protocols. Methods Mol Biology. 2015;1389:13–21.

    Article  Google Scholar 

  62. Mikami H, Lei C, Nitta N, Sugimura T, Ito T, Ozeki Y, et al. High-speed imaging meets single-cell analysis Chem. 2018;4:2278–300.

    CAS  Google Scholar 

  63. Amnis. Time delay integration: enabling high sensitivity detection for imaging-in-flow on the ImageStream 100 cell analysis system [Internet]. 2004 [cited 2023 Oct 8]. Available from: http://dp.univr.it/~laudanna/Systems%20Biology/Technologies/ImageStream/Tech%20Notes/Technology%20Report%20Time%20Delay%20Integration.pdf.

  64. Probst C, Zayats A, Venkatachalam V, Davidson B. Advanced characterization of silicone oil droplets in protein therapeutics using artificial intelligence analysis of imaging flow cytometry data. J Pharm Sci. 2020;109:2996–3005.

    Article  CAS  PubMed  Google Scholar 

  65. Filipe V, Poole R, Kutscher M, Forier K, Braeckmans K, Jiskoot W. Fluorescence single particle tracking for the characterization of submicron protein aggregates in biological fluids and complex formulations. Pharmaceut Res. 2011;28:1112–20.

    Article  CAS  Google Scholar 

  66. Umar M, Krause N, Hawe A, Simmel F, Menzen T. Towards quantification and differentiation of protein aggregates and silicone oil droplets in the low micrometer and submicrometer size range by using oil-immersion flow imaging microscopy and convolutional neural networks. Eur J Pharm Biopharm. 2021;169:97–102.

    Article  CAS  PubMed  Google Scholar 

  67. Kesavan PE, Behera RN, Mori S, Gupta I. Carbazole substituted BODIPYs: synthesis, computational, electrochemical and DSSC studies. J Fluoresc. 2017;27:2131–44.

    Article  CAS  PubMed  Google Scholar 

  68. Goetz C, Hammerbeck C, Bonnevier J, Peng LJ. Flow cytometry basics for the non-expert. Techniques Life Sci Biomed Non-expert. 2018;53–74.

  69. Bashashati A, Johnson NA, Khodabakhshi AH, Whiteside MD, Zare H, Scott DW, et al. B cells with high side scatter parameter by flow cytometry correlate with inferior survival in diffuse large B-cell lymphoma. Am J Clin Pathol. 2012;137:805–14.

    Article  PubMed  Google Scholar 

  70. Ramirez J-M, Bai Q, Péquignot M, Becker F, Kassambara A, Bouin A, et al. Side scatter intensity is highly heterogeneous in undifferentiated pluripotent stem cells and predicts clonogenic self-renewal. Stem Cells Dev. 2013;22:1851–60.

    Article  CAS  PubMed  Google Scholar 

  71. McNeil SE. Challenges for nanoparticle characterization. Methods Mol Biol (Clifton, NJ). 2010;697:9–15.

    Article  Google Scholar 

  72. Erdbrügger U, Rudy CK, Etter ME, Dryden KA, Yeager M, Klibanov AL, et al. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytom Part A. 2014;85:756–70.

    Article  Google Scholar 

  73. Matter A, Koulov A, Singh S, Mahler HC, Reinisch H, Langer C, et al. Variance between different light obscuration and flow imaging microscopy instruments and the impact of instrument calibration. J Pharm Sci [Internet]. 2019;108(7):2397–405. Available from: http://www.sciencedirect.com/science/article/pii/S0022354919301352.

  74. Dang Z, Jiang Y, Su X, Wang Z, Wang Y, Sun Z, et al. Particle counting methods based on microfluidic devices. Micromachines. 2023;14:1722.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chung W-L, Yin J, Messick S, Saggu M, Tschudi K, Woys A, et al. Compendial methods: suitability verification, challenges and recommendations for proteins. PDA J Pharm Sci Technol. 2020;74:581–91.

    Article  CAS  PubMed  Google Scholar 

  76. Ryan DP, Chen Y, Nguyen P, Goodwin PM, Carey JW, Kang Q, et al. 3D particle transport in multichannel microfluidic networks with rough surfaces. Sci Rep. 2020;10:13848.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci. 2013;405:322–30.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Lacroix R, Robert S, Poncelet P, Dignat-George F. Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost. 2010;36:807–18.

    Article  PubMed  Google Scholar 

  79. Varenne F, Makky A, Gaucher-Delmas M, Violleau F, Vauthier C. Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res. 2016;33:1220–34.

    Article  CAS  PubMed  Google Scholar 

  80. Schleinzer F, Strebl M, Blech M, Garidel P. Backgrounded membrane imaging—a valuable alternative for particle detection of biotherapeutics? J Pharm Innov. 2023;18:1575–93.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Julia Groß-Rother and Dr. Eric Frotscher for their excellent support and helpful discussions and Holger Thie for project management.

Author information

Authors and Affiliations

Authors

Contributions

All auhtors contributed to the study concept and design. Material preparation, data collection, and analysis were performed by IF and SS. The first draft of the manuscript was written by IF and MB. All authors read and approved the final manuscript. PG and MB supervised the study and MB was responsible for funding acquisition and resources.

Corresponding author

Correspondence to Michaela Blech.

Ethics declarations

Ethics Approval

N/A.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fawaz, I., Schaz, S., Garidel, P. et al. Assessment of Imaging Flow Cytometry for the Simultaneous Discrimination of Protein Particles and Silicone Oil Droplets in Biologicals. J Pharm Innov 19, 11 (2024). https://doi.org/10.1007/s12247-024-09810-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12247-024-09810-4

Keywords

Navigation