Skip to main content
Log in

Product-Related Factors and Immunogenicity of Biotherapeutics

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Biologic molecules constitute a major part of the therapeutics portfolio across the pipeline of several biotech and pharmaceutical companies. They have the advantage of being more target-specific, and recent progress in protein engineering has allowed product designs on various platforms that befit the therapeutic indication and allow differentiation from competitor molecules. They are fundamentally large proteins, with complex structural heterogeneity arising from production using recombinant gene technology in cell lines. These biotherapeutics run the risk of being recognized as foreign by the host immune system, eliciting both B and T cell responses. The impact ranges from none to benign infusion reactions to life-threatening anaphylaxis, and with evolving modalities for such molecules in the pipeline, it is critical to understand the interplay of various risk factors that modulate the immune response. During risk assessment and mitigation strategies in drug development, risk factors are broadly classified arising from patient and product-related origins, and this review will focus on the product-related risk factors.

Methods

A basic primer on immune mechanisms underlying immunogenicity to a biotherapeutic is provided to highlight those aspects that are influenced by product attributes; this is followed by a more focused discussion of relevant and recently published works pertaining to each critical product attribute and the in vitro and in vivo methodologies utilized to assess their risk.

Results

Some product-related factors have an influence on the product’s immunogenicity. This varies with the type of biotherapeutic product, the disease background, and the diversities seen in the subjects.

Conclusion

This article highlights some of the experimental limitations on risk evaluation of individual product attributes and emphasizes that immunogenicity manifesting as an undesirable clinical outcome results from the cumulative effect of several risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Schouwenburg PA, Rispens T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9:164–72.

    Article  PubMed  CAS  Google Scholar 

  2. Clarke JB. Mechanisms of adverse drug reactions to biologics. Handb Exp Pharmacol. 2010;196:453–74.

    Article  CAS  Google Scholar 

  3. Chong BH, Choi PY-I, Khachigian L, Perdomo J. Drug-induced immune thrombocytopenia. Hematol Oncol Clin N Am. 2013;27:521–40.

    Article  Google Scholar 

  4. Deehan M, Garces S, Kramer D, Baker MP, Rat D, Roettger Y, et al. Managing unwanted immunogenicity of biologicals. Autoimmun Rev. 2015;14:569–74.

    Article  CAS  PubMed  Google Scholar 

  5. Schellekens H. The immunogenicity of therapeutic proteins. Discov Med. 2010;9(49):560–4.

    PubMed  Google Scholar 

  6. Leach MW, Rottman JB, Hock MB, Finco D, Rojko JL, Beyer JC. Immunogenicity/hypersensitivity of biologics. Toxicol Pathol. 2014;42(1):293–300.

    Article  CAS  PubMed  Google Scholar 

  7. Vultaggio A, Nencini F, Pratesi S, Petroni G, Maggi E, Matucci A. Manifestations of antidrug antibodies response: hypersensitivity and infusion reactions. J Interf Cytokine Res. 2014;34(12):946–52.

    Article  CAS  Google Scholar 

  8. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 2012;14(2):296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P, et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346(7):469–75.

    Article  CAS  PubMed  Google Scholar 

  11. De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol. 2007;28(11):482–90.

    Article  PubMed  CAS  Google Scholar 

  12. Krieckaert C, Rispens T, Wolbink G. Immunogenicity of biological therapeutics: from assay to patient. Curr Opin Rheumatol. 2012;24(3):306–11.

    Article  PubMed  Google Scholar 

  13. Ridker PM, Tardif JC, Amarenco P, Duggan W, Glynn RJ, Jukema JW, et al. Yunis C; SPIRE Investigators. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376(16):1517–26.

    Article  CAS  PubMed  Google Scholar 

  14. Kromminga A, Schellekens H. Antibodies against erythropoietin and other protein-based therapeutics: an overview. Ann N Y Acad Sci. 2005;1050:257–65.

    Article  CAS  PubMed  Google Scholar 

  15. Sorensen PS, Ross C, Clemmesen KM, Bendtzen K, Frederiksen JL, Jensen K, et al. Clinical importance of neutralizing antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. Lancet. 2003;362(9391):1184–91.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson PJ. Tumor necrosis factor inhibitors: clinical implications of their different immunogenicity profiles. Semin Arthritis Rheum. 2005;34(5 Suppl1):19–22.

    Article  CAS  PubMed  Google Scholar 

  17. Sethu S, Govindappa K, Alhaidari M, Pirmohamed M, Park K, Sathish J. Immunogenicity to biologics: mechanisms, prediction and reduction. Arch Immunol Ther Exp (Warsz). 2012;60(5):331–44.

    Article  CAS  Google Scholar 

  18. Sathish JG, Sethu S, Bielsky MC, de Haan L, French NS, Govindappa K, et al. Challenges and approaches for the development of safer immunomodulatory biologics. Nat Rev Drug Discov. 2013;12(4):306–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aarskog NK, Marøy T, Myhr KM, Vedeler CA. Antibodies against interferon-beta in multiple sclerosis. J Neuroimmunol. 2009;212(1–2):148–50.

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood. 2001;98(12):3241–8.

    Article  CAS  PubMed  Google Scholar 

  21. Maneiro JR, Salgado E, Gomez-Reino JJ. Immunogenicity of monoclonal antibodies against tumor necrosis factor used in chronic immune-mediated inflammatory conditions: systematic review and meta-analysis. JAMA Intern Med. 2013;173(15):1416–28.

    Article  CAS  PubMed  Google Scholar 

  22. Krishna M, Nadler SG. The role of anti-drug immune complexes. Front Immunol. 2016;7:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Koren E, Smith HW, Shores E, Shankar G, Finco-Kent D, Rup B, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rup B, Pallardy M, Sikkema D, Albert T, Allez M, Broet P, et al. Consortium, Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the innovative medicines initiative ABIRISK consortium. Clin Exp Immunol. 2015;181(3):385–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kloks C, Berger C, Cortez P, Dean Y, Heinrich J, Bjerring Jensen L, et al. A fit-for-purpose strategy for the risk-based immunogenicity testing of biotherapeutics: a European industry perspective. J Immunol Methods. 2015;417:1–9.

    Article  CAS  PubMed  Google Scholar 

  26. U.S. Department of Health and Human Services. Food and Drug Administration. Guidance for Industry: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-assessment-therapeutic-protein-products. Immunogenicity Assessment for therapeutic protein products. Accessed Aug 2014.

  27. U.S. Department of Health and Human Services. Food and Drug Administration. Guidance for Industry: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-testing-therapeutic-protein-products-developing-and-validating-assays-anti-drug. Immunogenicity testing of therapeutic protein products - developing and validating assays for anti-drug antibody detection. Accessed Jan 2019.

  28. Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100(2):354–87.

    Article  CAS  PubMed  Google Scholar 

  29. Richard J, Prang N. The formulation and immunogenicity of therapeutic proteins: Product quality as a key factor. IDrugs. 2010;13(8):550–8.

    CAS  PubMed  Google Scholar 

  30. Singh SK, Cousens LP, Alvarez D, Mahajan PB. Determinants of immunogenic response to protein therapeutics. Biologicals. 2012;40(5):364–8.

    Article  CAS  PubMed  Google Scholar 

  31. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself. 2010;1(4):314–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van Beers MM, Bardor M. Minimizing immunogenicity of biopharmaceuticals by controlling critical quality attributes of proteins. Biotechnol J. 2012;7(12):1473–84.

    Article  PubMed  CAS  Google Scholar 

  33. Bajtay Z, Csomor E, Sándor N, Erdei A. Expression and role of Fc- and complement-receptors on human dendritic cells. Immunol Lett. 2006;104(1–2):46–52.

    Article  CAS  PubMed  Google Scholar 

  34. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Théry C, Rescigno M, et al. Fc gamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med. 1999;189(2):371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaber A, Baker M. Assessment of the immunogenicity of different interferon beta-1a formulations using ex vivo T-cell assays. J Pharm Biomed Anal. 2007;43:4 1256–1261.

    Article  CAS  Google Scholar 

  36. Goins CL, Chappell CP, Shashidharamurthy R, Selvaraj P, Jacob J. Immune complex-mediated enhancement of secondary antibody responses. J Immunol. 2010;184(11):6293–8.

    Article  CAS  PubMed  Google Scholar 

  37. Fehr T, Bachmann MF, Bucher E, Kalinke U, Di Padova FE, Lang AB, et al. Role of repetitive antigen patterns for induction of antibodies against antibodies. J Exp Med. 1997;185(10):1785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nat Rev Immunol. 2009;9(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  39. Fogdell-Hahn A. Antidrug antibodies: B cell immunity against therapy. Scand J Immunol. 2015;82(3):184–90.

    Article  CAS  PubMed  Google Scholar 

  40. Balázs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 2002;17(3):341–52.

    Article  PubMed  Google Scholar 

  41. Salazar-Fontana L, Desai DD, Khan TA, Pillutla RC, Prior S, Ramakrishnan R, et al. Approaches to mitigate the unwanted immunogenicity of therapeutic proteins during drug development. AAPS J. 2017;19(2):377–85.

    Article  CAS  PubMed  Google Scholar 

  42. De Groot AS, Moise L. Prediction of immunogenicity for therapeutic proteins: state of the art. Curr Opin Drug Discov Dev. 2007;10(3):332–40.

    Google Scholar 

  43. Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–55.

    Article  CAS  PubMed  Google Scholar 

  44. Gokemeijer J, Jawa V, Mitra-Kaushik S. How close are we to profiling immunogenicity risk using in silico algorithms and in vitro methods? : an industry perspective. AAPS J. 2017;19(6):1587–92.

    Article  CAS  PubMed  Google Scholar 

  45. Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs. 2010;24(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  46. Zurdo J, Arnell A, Obrezanova O, Smith N, Gómez de la Cuesta R, Gallagher TR, et al. Early implementation of QbD in biopharmaceutical development: a practical example. Biomed Res Int. 2015;2015:605427.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wullner D, Zhou L, Bramhall E, Kuck A, Goletz TJ, Swanson S, et al. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clin Immunol. 2010;137(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  48. Holgate RG, Weldon R, Jones TD, Baker MP. Characterisation of a novel anti-CD52 antibody with improved efficacy and reduced immunogenicity. PLoS One. 2015;10(9):e0138123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide "Tregitopes". Blood. 2008;112(8):3303–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Su Y, Rossi R, De Groot AS, Scott DW. Regulatory T cell epitopes (Tregitopes) in IgG induce tolerance in vivo and lack immunogenicity per se. J Leukoc Biol. 2013;94(2):377–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jefferis R. Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther. 2007;7(9):1401–13.

    Article  CAS  PubMed  Google Scholar 

  52. Kuriakose A, Chirmule N, Nair P. Immunogenicity of biotherapeutics: causes and association with posttranslational modifications. J Immunol Res. 2016:1298473

  53. Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol. 2010;28(8):863–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Galili U, Macher BA, Buehler J, Shohet SB. Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1----3)-linked galactose residues. J Exp Med. 1985;162(2):573–82.

    Article  CAS  PubMed  Google Scholar 

  55. Kessler CM, Ortel TL. Recent developments in topical thrombins. Thromb Haemost. 2009;102(1):15–24.

    CAS  PubMed  Google Scholar 

  56. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422(6929):307–12.

    Article  CAS  PubMed  Google Scholar 

  57. Chenu S, Grégoire A, Malykh Y, Visvikis A, Monaco L, Shaw L, et al. Reduction of CMP-N-acetylneuraminic acid hydroxylase activity in engineered Chinese hamster ovary cells using an antisense-RNA strategy. Biochim Biophys Acta. 2003;1622(2):133–44.

    Article  CAS  PubMed  Google Scholar 

  58. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313(5792):1441–3.

    Article  CAS  PubMed  Google Scholar 

  59. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol. 2016;36(6):1110–22.

    Article  CAS  PubMed  Google Scholar 

  60. Fournier J. A review of glycan analysis requirements. BioPharm Int. 2015;28(10):32–7.

    Google Scholar 

  61. Myler H, Hruska MW, Srinivasan S, Cooney E, Kong G, Dodge R, et al. Anti-PEG antibody bioanalysis: a clinical case study with PEG-IFN-λ-1a and PEG-IFN-α2a in naive patients. Bioanalysis. 2015;7(9):1093–106.

    Article  CAS  PubMed  Google Scholar 

  62. Krishna M, Palme H, Duo J, Lin Z, Corbett M, Dodge R, et al. Development and characterization of antibody reagents to assess anti-PEG IgG antibodies in clinical samples. Bioanalysis. 2015;7(15):1869–83.

    Article  CAS  PubMed  Google Scholar 

  63. Hershfield MS, Ganson NJ, Kelly SJ, Scarlett EL, Jaggers DA, Sundy JS. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res Ther. 2014;16(2):R63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012;9(11):1319–23.

    Article  CAS  PubMed  Google Scholar 

  65. Narhi LO, Schmit J, Bechtold-Peters K, Sharma D. Classification of protein aggregates. J Pharm Sci. 2012;101(2):493–8.

    Article  CAS  PubMed  Google Scholar 

  66. Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, et al. Immunogenicity of Therapeutic Protein Aggregates. J Pharm Sci. 2016;105(2):417–30.

    Article  CAS  PubMed  Google Scholar 

  67. Jones JC, Settles EW, Brandt CR, Schultz-Cherry S. Virus aggregating peptide enhances the cell-mediated response to influenza virus vaccine. Vaccine. 2011;29(44):7696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rombach-Riegraf V, Karle AC, Wolf B, Sordé L, Koepke S, Gottlieb S, et al. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T cell responses in vitro. PLoS One. 2014;9(1):e86322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T cell immune responses. J Biol Chem. 2012;287(30):25266–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumar S, Singh SK, Wang X, Rup B, Gill D. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B cell immune epitopes may contain aggregation-prone regions. Pharm Res. 2011;28(5):949–61.

    Article  CAS  PubMed  Google Scholar 

  71. Marszal E, Fowler E. Workshop on predictive science of the immunogenicity aspects of particles in biopharmaceutical products. J Pharm Sci. 2012;101(10):3555–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kijanka G, Bee JS, Schenerman MA, Korman SA, Wu Y, Slütter B, et al. Monoclonal antibody dimers induced by low pH, heat, or light exposure are not immunogenic upon subcutaneous administration in a mouse model. J Pharm Sci. 2019. https://doi.org/10.1016/j.xphs.2019.04.021.

  73. Kijanka G, Bee JS, Korman SA, Wu Y, Roskos LK, Schenerman MA, et al. Submicron size particles of a murine monoclonal antibody are more immunogenic than soluble oligomers or micron size particles upon subcutaneous administration in mice. J Pharm Sci. 2018;107(11):2847–59.

    Article  CAS  PubMed  Google Scholar 

  74. Polumuri SK, Haile LA, Ireland DDC, Verthelyi D. Aggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impurities. Sci Rep. 2018;8(1):11477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bi V, Jawa V, Joubert MK, Kaliyaperumal A, Eakin C, Richmond K, et al. Development of a human antibody tolerant mouse model to assess the immunogenicity risk due to aggregated biotherapeutics. J Pharm Sci. 2013;102(10):3545–55.

    Article  CAS  PubMed  Google Scholar 

  76. Kinderman F, Yerby B, Jawa V, Joubert MK, Joh NH, Malella J, et al. Impact of precipitation of antibody therapeutics after subcutaneous injection on pharmacokinetics and immunogenicity. J Pharm Sci. 2019;108(6):1953–63.

    Article  CAS  PubMed  Google Scholar 

  77. Senga Y, Honda S. Suppression of aggregation of therapeutic monoclonal antibodies during storage by removal of aggregation precursors using a specific adsorbent of non-native IgG conformers. Bioconjug Chem. 2018;29(10):3250–61.

    Article  CAS  PubMed  Google Scholar 

  78. Jawa V, Joubert MK, Zhang Q, Deshpande M, Hapuarachchi S, Hall MP, et al. Evaluating immunogenicity risk due to host cell protein impurities in antibody-based biotherapeutics. AAPS J. 2016;18(6):1439–52.

    Article  CAS  PubMed  Google Scholar 

  79. Haile LA, Puig M, Kelley-Baker L, Verthelyi D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One. 2015;10(4):e0125078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Haile LA, Polumuri SK, Rao R, Kelley-Baker L, Kryndushkin D, Rajaiah R, et al. Cell based assay identifies TLR2 and TLR4 stimulating impurities in interferon beta. Sci Rep. 2017;7(1):10490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Verthelyi D, Wang V. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One. 2010;5(12):e15252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carrasco-Marín E, Paz-Miguel JE, López-Mato P, Alvarez-Domínguez C, Leyva-Cobián F. Oxidation of defined antigens allows protein unfolding and increases both proteolytic processing and exposes peptide epitopes which are recognized by specific T cells. Immunology. 1998;95(3):314–21.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM. In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem. 2005;77(5):1432–9.

    Article  CAS  PubMed  Google Scholar 

  84. Fradkin AH, Carpenter JF, Randolph TW. Glass particles as an adjuvant: a model for adverse immunogenicity of therapeutic proteins. J Pharm Sci. 2011;100(11):4953–64.

    Article  CAS  PubMed  Google Scholar 

  85. Markovic I. Evaluation of safety and quality impact of extractable and leachable substances in therapeutic biologic protein products: a risk-based perspective. Expert Opin Drug Saf. 2007;6(5):487–91.

    Article  CAS  PubMed  Google Scholar 

  86. Bee JS, Goletz TJ, Ragheb JA. The future of protein particle characterization and understanding its potential to diminish the immunogenicity of biopharmaceuticals: a shared perspective. J Pharm Sci. 2012;101(10):3580–5.

    Article  CAS  PubMed  Google Scholar 

  87. Shomali M, Tanriverdi S, Freitag AJ, Engert J, Winter G, Siedler M, et al. Dose levels in particulate-containing formulations impact anti-drug antibody responses to murine monoclonal antibody in mice. J Pharm Sci. 2015;104(5):1610–21.

    Article  CAS  PubMed  Google Scholar 

  88. Macdougall IC. Pure red cell aplasia with anti-erythropoietin antibodies occurs more commonly with one formulation of epoetin alfa than another. Curr Med Res Opin. 2004;20(1):83–6.

    Article  CAS  PubMed  Google Scholar 

  89. Mueller R, Karle A, Vogt A, Kropshofer H, Ross A, Maeder K, et al. Evaluation of the immuno-stimulatory potential of stopper extractables and leachables by using dendritic cells as readout. J Pharm Sci. 2009;98(10):3548–61.

    Article  CAS  PubMed  Google Scholar 

  90. De Groot AS, McMurry J, Moise L. Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol. 2008;8(5):620–6.

Download references

Acknowledgements

The author would like to acknowledge Gerry Kolaitis and Surendran Rajendran for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murli Krishna.

Ethics declarations

Conflict of Interest

The author declares he has no conflict of interest.

Informed Consent

This article does not contain any information that refers to any individual study participants. This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, M. Product-Related Factors and Immunogenicity of Biotherapeutics. J Pharm Innov 15, 219–231 (2020). https://doi.org/10.1007/s12247-019-09423-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-019-09423-2

Keywords

Navigation